Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Oce...Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Ocean. The IAP9L model, which is developed at the Institute of Atmospheric Physics of the Chinese Academy of Science, is used to simulate the influence of the Indian Ocean SSTA on the general circulation and weather/climate anomalies in the monsoon region of Asia. It is found that the warm (cool) SSTA in the equatorial low latitudes of the Indian Ocean triggers winter (summer) teleconnection patterns in middle and higher latitudes of the Northern Hemisphere that are similar to PNA or EAP. They play a very important role in the anomaly of circulation or weather and climate in the middle and lower latitudes of the Asian summer monsoon region. With the warm (cool) SSTA forcing in the Indian Ocean, the Asian summer monsoon sets up at a late (early) date and withdraws at a early (late) date, lasting for a short (long) duration at a weak (strong) intensity. The Indian Ocean SSTA is shown to be an indicator for precipitation variation in China.展开更多
The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole ind...The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.展开更多
The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the pe...The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.展开更多
The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-...The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-April with higher SST in the west region and lower SST in the east region as the positive phase and higher SST in the east region and lower SST in the west region as the negative phase. Generally, the amplitude of the positive phase is larger than the negative phase. The interannual variation (4-5 year period) and the interdecadal variation (25-30 year period) also exist in the dipole. The analyses also showed the significant impact of the Indian Ocean dipole on the Asian monsoon activity, because the lower tropospheric wind fields over the Southern Asia, the Tibetan high in the upper troposphere and the subtropical high over the northwestern Pacific are all related to the Indian Ocean dipole. On the other, the Indian Ocean dipole still has significant impact on atmospheric circulation and climate in North America and the southern Indian Ocean region (including Australia and South Africa).展开更多
使用1951—2014年广西河池市红水河龙滩站的月流量和同期海温、500 h Pa位势高度、850 h Pa矢量风资料,基于相关分析、EOF分析和合成分析,研究了红水河汛期流量与印度洋海温异常的关系,以及印度洋海温异常影响红水河流量的物理机制。结...使用1951—2014年广西河池市红水河龙滩站的月流量和同期海温、500 h Pa位势高度、850 h Pa矢量风资料,基于相关分析、EOF分析和合成分析,研究了红水河汛期流量与印度洋海温异常的关系,以及印度洋海温异常影响红水河流量的物理机制。结果表明,印度洋海温距平分布的三种模态,包括前期夏季印度洋海温距平EOF16—8、EOF12—4、印度洋海温距平EOF12—4和EOF32—4,与红水河汛期流量显著相关。用这三个模态的时间系数、龙滩站前期4—5月平均流量和南印度洋2、3和4月偶极子指数可以很好地模拟龙滩站汛期流量,因此,它们可以作为红水河径流预测的物理因子。印度洋海温异常影响红水河汛期流量的途径可以概括为,印度洋海温冷水年,冷异常可在四个季节持续。春季冷海温可使北半球春季南支气流上小槽波动强烈,南支槽加强,水汽输送显著增强;夏季可显著增强夏季风气流,使更多的水汽输送到红水河增大径流量;秋季和冬季,印度洋的冷海水减弱了北半球冬季环流形势,诱使西北太平洋水汽向中国东部地区输送,使红水河有更多的水汽汇集增大龙滩站流量。反之,印度洋海温暖水年时,四个季节的海温持续增暖,使北半球中纬度低气压系统变得不活跃,冬季形势进入早、而结束晚,中国东部受干燥气流控制时间长,春季和夏季副热带高压增强,同时,夏季风减弱,水汽输送较少,使汛期红水河流量减小。展开更多
基金Applied Foundation of Science and Technology Committee of Yunnan Province(97D033Q)and LASG
文摘Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Ocean. The IAP9L model, which is developed at the Institute of Atmospheric Physics of the Chinese Academy of Science, is used to simulate the influence of the Indian Ocean SSTA on the general circulation and weather/climate anomalies in the monsoon region of Asia. It is found that the warm (cool) SSTA in the equatorial low latitudes of the Indian Ocean triggers winter (summer) teleconnection patterns in middle and higher latitudes of the Northern Hemisphere that are similar to PNA or EAP. They play a very important role in the anomaly of circulation or weather and climate in the middle and lower latitudes of the Asian summer monsoon region. With the warm (cool) SSTA forcing in the Indian Ocean, the Asian summer monsoon sets up at a late (early) date and withdraws at a early (late) date, lasting for a short (long) duration at a weak (strong) intensity. The Indian Ocean SSTA is shown to be an indicator for precipitation variation in China.
基金Research on the Mechanism and Prediction of Major Climatic Calamities in China a national key program for developing basic science (G199804090303) Science Foundation of Yunnan (97D022G)
文摘The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102)the NSFC (Grant Nos. 41375094 and 41406028)+1 种基金the "973" project (Grant No. 2012CB956000)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)
文摘The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.
基金This work was supported by the National Key Basic Science Program in China (Grant No.1998040903) and Chinese NSF (Grant No 498
文摘The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-April with higher SST in the west region and lower SST in the east region as the positive phase and higher SST in the east region and lower SST in the west region as the negative phase. Generally, the amplitude of the positive phase is larger than the negative phase. The interannual variation (4-5 year period) and the interdecadal variation (25-30 year period) also exist in the dipole. The analyses also showed the significant impact of the Indian Ocean dipole on the Asian monsoon activity, because the lower tropospheric wind fields over the Southern Asia, the Tibetan high in the upper troposphere and the subtropical high over the northwestern Pacific are all related to the Indian Ocean dipole. On the other, the Indian Ocean dipole still has significant impact on atmospheric circulation and climate in North America and the southern Indian Ocean region (including Australia and South Africa).
文摘使用1951—2014年广西河池市红水河龙滩站的月流量和同期海温、500 h Pa位势高度、850 h Pa矢量风资料,基于相关分析、EOF分析和合成分析,研究了红水河汛期流量与印度洋海温异常的关系,以及印度洋海温异常影响红水河流量的物理机制。结果表明,印度洋海温距平分布的三种模态,包括前期夏季印度洋海温距平EOF16—8、EOF12—4、印度洋海温距平EOF12—4和EOF32—4,与红水河汛期流量显著相关。用这三个模态的时间系数、龙滩站前期4—5月平均流量和南印度洋2、3和4月偶极子指数可以很好地模拟龙滩站汛期流量,因此,它们可以作为红水河径流预测的物理因子。印度洋海温异常影响红水河汛期流量的途径可以概括为,印度洋海温冷水年,冷异常可在四个季节持续。春季冷海温可使北半球春季南支气流上小槽波动强烈,南支槽加强,水汽输送显著增强;夏季可显著增强夏季风气流,使更多的水汽输送到红水河增大径流量;秋季和冬季,印度洋的冷海水减弱了北半球冬季环流形势,诱使西北太平洋水汽向中国东部地区输送,使红水河有更多的水汽汇集增大龙滩站流量。反之,印度洋海温暖水年时,四个季节的海温持续增暖,使北半球中纬度低气压系统变得不活跃,冬季形势进入早、而结束晚,中国东部受干燥气流控制时间长,春季和夏季副热带高压增强,同时,夏季风减弱,水汽输送较少,使汛期红水河流量减小。