期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Coordinated Influence of Indian Ocean Sea Surface Temperature and Arctic Sea Ice on Anomalous Northeast China Cold Vortex Activities with Different Paths during Late Summer 被引量:2
1
作者 Yitong LIN Yihe FANG +3 位作者 Chunyu ZHAO Zhiqiang GONG Siqi YANG Yiqiu YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期62-77,共16页
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC... The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months. 展开更多
关键词 machine learning method Northeast China cold vortex path classification indian ocean sea surface temperature Arctic sea ice model sensitivity test
下载PDF
Characteristics of the Summer Time Rainfall Patterns over China and the Indian Ocean Sea Surface Temperature Anomalies
2
作者 彭模 韩雪 陈茂钦 《Meteorological and Environmental Research》 CAS 2010年第2期24-30,36,共8页
Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evo... Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evolution of the summer precipitation,along with the relationships between the precipitation over China and the SST in Indian Ocean,with the EOF and SVD methods respectively.The important results are:several canonical anomalous summer precipitation patterns have been identified.The summer SST in Indian Ocean is positively correlated with the simultaneous precipitation in the Yangtze River and Huai River Basin,while negatively with that in other parts of China. 展开更多
关键词 Precipitation in summer Rainfall pattern sea surface temperature in indian ocean China
下载PDF
Prediction and mechanistic analysis of May precipitation in North China based on April Indian Ocean SST and the Northwest Pacific Dipole 被引量:1
3
作者 Tiejun Xie Taichen Feng +2 位作者 Rong Zhi Ji Wang Qing Zhang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第6期50-56,共7页
North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate an... North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction. 展开更多
关键词 North China May precipitation indian ocean sea surface temperature Northwest Pacific Dipole Synergistic effect Annual variability
下载PDF
The regime shift in the 1960s and associated atmospheric change over the southern Indian Ocean
4
作者 WANG Tianyu DU Yan LIAO Xiaomei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第1期1-8,共8页
The change of sea surface temperature(SST) in the southern Indian Ocean(SIO) during the recent six decades has been analyzed based on oceanic reanalysis and model, as well as atmospheric data. The results show tha... The change of sea surface temperature(SST) in the southern Indian Ocean(SIO) during the recent six decades has been analyzed based on oceanic reanalysis and model, as well as atmospheric data. The results show that a thermal regime shift in SIO during the 1960 s, which is not caught enough attentions, has been of equal magnitude to the linear warming since 1970. Empirical Orthogonal Function(EOF) analyses reveal that a thermal shift is combined with atmospheric changes such as the weakening of westerly during the period of 1960–1967. Inner dynamic connections can be defined that when the westerly winds turn weak, the anticyclonic wind circulation between westerly winds and the trade winds decreases, which further reduces the SST to a negative peak in this period. It is noted that the shifts in the 1960 s are also evident for Southern Hemisphere. For example, subtropical high and the entire westerly winds belt at high latitudes both change dramatically in the 1960 s. This large-scaled process maybe link to the change of southern annular mode(SAM). 展开更多
关键词 sea surface temperature regime shift southern indian ocean interdecadal variabilities linear trend
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部