There are a number of structures and structural styles found in extensional tectonic settings of the world,and it is a big challenge to study the evolution of these structures. Evolution of structures formed in extens...There are a number of structures and structural styles found in extensional tectonic settings of the world,and it is a big challenge to study the evolution of these structures. Evolution of structures formed in extensional tectonic settings have been studied by researchers on different extensional basins of the world. Southern Sindh Monocline lies on the western corner of Indian Plate and the tectonic history of Indian plate has also experienced different extensional episodes, and its journey rifted from Gondwanaland to its final welding to Asia. The aim of this study is to figure out the evolution of structures in the subsurface of Southern Sindh Monocline, Pakistan using the seismic data interpretation and flattening of horizons approach. Structures within the subsurface of Southern Sindh Monocline have been characterized by different tectonic episodes of Indian plate while rifting from Gondwanaland, rifting from other plates at different geological times and to its collision with the Asia. Basic structures within study area are classified into nine types while the structural styles have been classified into six types as horst and grabens, dominos, crotch, synthetic and antithetic, negative and flashlight structural style. The structures within the study area revealed evidence for three major structural episodes which can be characterized as Episode 1: Structures associated with rifting of Indian plate from Gondwanaland during Late Jurassic to Early Cretaceous, Episode 2: Modification and reactivation of previous structures while Madagascar rifted from Indian Plate during the Middle Cretaceous and during Episode 3: Inversion and reactivation of structures occurred when Indian Plate collided with Asia during Early Eocene.展开更多
Lower crustal earthquake occurrence in the Central Indian Tectonic Zone (CITZ) of the Indian sub-continent was investigated using magnetotelluric (MT) data. MT models across the CITZ, including the new resistivity...Lower crustal earthquake occurrence in the Central Indian Tectonic Zone (CITZ) of the Indian sub-continent was investigated using magnetotelluric (MT) data. MT models across the CITZ, including the new resistivity model across the 1938 Satpura lower crustal earthquake epicenter, show low resistive (〈80 Ωm) mid-lower crust and infer small volume (〈1 vol%) of aqueous fluids existing in most part of lower crust. This in conjunction with xenoliths and other geophysical data supports a predominant brittle/semi-brittle lower crustal theology. However, the local deep crustal zones with higher fluid content of 2.2%-6.5% which have been mapped imply high pore pressure conditions. The observation above and the significant strain rate in the region provide favorable conditions (strong/ moderate rock strength, moderate temperature, high pore pressure and high strain rate) for brittle failure in the lower crust. It can be inferred that the fluid-rich pockets in the mid-lower crust might have catalyzed earthquake generation by acting as the source of local stress (fluid pressure), which together with the regional stress produced critical seismogenic stress conditions. Alternatively, fluids reduce the shear strength of the rocks to favor tectonic stress concentration that can be transferred to seismogenic faults to trigger earthquakes.展开更多
The Indo-Pacific convergence region is the best target to solve the teo remaining challenges of the plate tectonics theory,i.e.,subduction initiation and the driving force of plate tectonics.Recent studies proposed th...The Indo-Pacific convergence region is the best target to solve the teo remaining challenges of the plate tectonics theory,i.e.,subduction initiation and the driving force of plate tectonics.Recent studies proposed that the Izu-Bonin subduction initiation belongs to spontaneous initiation,which implies that it started from extension,followed by low angle subduction.Numerical geodynamic modeling suggests that the initiation of plate subduction likely occurred along a transform fault,which put the young spreading ridge in direct contact with old oceanic crust.This,however,does not explain the simultaneous subduction initiation in the west Pacific region in the Cenozoic.Namely,the subduction initiations in the Izu-BoninMariana,the Aleutian,and the Tonga-Kermadec trenches are associated with oceanic crusts of different ages,yet they occurred at roughly the same time,suggesting that they were all triggered by a maj or change in the Pacific plate.Moreover,low angle subduction induces compression rather than extension,which requires external compression forces.Given that the famous Hawaiian-Emperor bending occurred roughly at the same time with the onset of westward subductions in the west Pacific,we propose that these Cenozoic subductions were initiated by the steering of the Pacific plate,which are classified as induced initiation.Induced subduction initiation usually occurs in young ocean basins,forming single-track subduction.The closure s of Neo-Tethys Oceans were likely triggered by plume s in the south,forming northward subductions.Interestingly,the Indian plate kept on moving northward more than 50 Ma after the collision between the Indian and Eurasian continents and the break-off of the subducted oceanic slab attached to it.This strongly suggests that slab pull is not the main driving force of plate tectonics,whereas slab sliding is.展开更多
Recent advances in three-dimensional numerical simulations of mantle convection have aided in approximately reproducing continental movement since the Pangea breakup at 200 Ma. These have also led to a better understa...Recent advances in three-dimensional numerical simulations of mantle convection have aided in approximately reproducing continental movement since the Pangea breakup at 200 Ma. These have also led to a better understanding of the thermal and mechanical coupling between mantle convection and surface plate motion and predictions of the configuration of the next supercontinent. The simulations of mantle convection from 200 Ma to the present reveals that the development of large-scale cold mantle downwellings in the North Tethys Ocean at the earlier stage of the Pangea breakup triggered the northward movement of the Indian subcontinent. The model of high temperature anomaly region beneath Pangea resulting from the thermal insulation effect support the breakup of Pangea in the real Earth time scale, as also suggested in previous geological and geodynamic models. However, considering the low radioactive heat generation rate of the depleted upper mantle, the high temperature anomaly region might have been generated by upwelling plumes with contribution of deep subducted TTG(tonalite-trondhjemite-granite) materials enriched in radiogenic elements. Integrating the numerical results of mantle convection from 200 Ma to the present, and from the present to the future, it is considered that the mantle drag force acting on the base of continents may be comparable to the slab pull force, which implies that convection in the shallower part of the mantle is strongly coupled with surface plate motion.展开更多
We estimate the shear wave splitting parameters vis-a-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad(DHN) and Bokaro(BOKR) in the Eastern Ind...We estimate the shear wave splitting parameters vis-a-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad(DHN) and Bokaro(BOKR) in the Eastern Indian Shield region. Broadband seismic data of 146 and 131 teleseismic earthquake events recorded at DHN and BOKR stations during 2007-2014 were analyzed for the present measurements.The study is carried out using rotation-correlation and transverse component minimization methods. We retain our "Good", "Fair" and "Null" measurements, and estimate the splitting parameters using 13 "Good" results for DHN and 10 "Good" results for BOKR stations. The average splitting parameters(φ,δt)for DHN and BOKR stations are found to be 50.76°±5.46° and 0.82±0.2 s and 56.30°±5.07° and0.95 ± 0.17 s, and the estimated average thicknesses of the anisotropic layers beneath these two stations are ~94 and ~109 km,respectively. The measured deviation of azimuth of the fast axis direction(0)from the absolute motion of the Indian plate ranges from ~8° to 14°. The measured deviation of azimuth of the fast axis direction(0) from the absolute motion of the Indian plate ranges from ~8° to 14°. The eastward deviation of the fast axis azimuths from absolute plate motion direction is interpreted to be caused by induced outflow from the asthenosphere. Further, the delay time found in the present analysis is close to the global average for continental shield areas, and also coherent with other studies for Indian shield regions. The five "Null" results and the lower delay time of ~0.5-0.6 s might be indicating multilayer anisotropy existing in the mantle lithosphere beneath the study area.展开更多
文摘There are a number of structures and structural styles found in extensional tectonic settings of the world,and it is a big challenge to study the evolution of these structures. Evolution of structures formed in extensional tectonic settings have been studied by researchers on different extensional basins of the world. Southern Sindh Monocline lies on the western corner of Indian Plate and the tectonic history of Indian plate has also experienced different extensional episodes, and its journey rifted from Gondwanaland to its final welding to Asia. The aim of this study is to figure out the evolution of structures in the subsurface of Southern Sindh Monocline, Pakistan using the seismic data interpretation and flattening of horizons approach. Structures within the subsurface of Southern Sindh Monocline have been characterized by different tectonic episodes of Indian plate while rifting from Gondwanaland, rifting from other plates at different geological times and to its collision with the Asia. Basic structures within study area are classified into nine types while the structural styles have been classified into six types as horst and grabens, dominos, crotch, synthetic and antithetic, negative and flashlight structural style. The structures within the study area revealed evidence for three major structural episodes which can be characterized as Episode 1: Structures associated with rifting of Indian plate from Gondwanaland during Late Jurassic to Early Cretaceous, Episode 2: Modification and reactivation of previous structures while Madagascar rifted from Indian Plate during the Middle Cretaceous and during Episode 3: Inversion and reactivation of structures occurred when Indian Plate collided with Asia during Early Eocene.
文摘Lower crustal earthquake occurrence in the Central Indian Tectonic Zone (CITZ) of the Indian sub-continent was investigated using magnetotelluric (MT) data. MT models across the CITZ, including the new resistivity model across the 1938 Satpura lower crustal earthquake epicenter, show low resistive (〈80 Ωm) mid-lower crust and infer small volume (〈1 vol%) of aqueous fluids existing in most part of lower crust. This in conjunction with xenoliths and other geophysical data supports a predominant brittle/semi-brittle lower crustal theology. However, the local deep crustal zones with higher fluid content of 2.2%-6.5% which have been mapped imply high pore pressure conditions. The observation above and the significant strain rate in the region provide favorable conditions (strong/ moderate rock strength, moderate temperature, high pore pressure and high strain rate) for brittle failure in the lower crust. It can be inferred that the fluid-rich pockets in the mid-lower crust might have catalyzed earthquake generation by acting as the source of local stress (fluid pressure), which together with the regional stress produced critical seismogenic stress conditions. Alternatively, fluids reduce the shear strength of the rocks to favor tectonic stress concentration that can be transferred to seismogenic faults to trigger earthquakes.
基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(No.XDB42020203,XDB18020102)the National Key R&D Program of China(No.2016YFC0600408)the Taishan Scholar Program of Shandong(No.TS201712075)。
文摘The Indo-Pacific convergence region is the best target to solve the teo remaining challenges of the plate tectonics theory,i.e.,subduction initiation and the driving force of plate tectonics.Recent studies proposed that the Izu-Bonin subduction initiation belongs to spontaneous initiation,which implies that it started from extension,followed by low angle subduction.Numerical geodynamic modeling suggests that the initiation of plate subduction likely occurred along a transform fault,which put the young spreading ridge in direct contact with old oceanic crust.This,however,does not explain the simultaneous subduction initiation in the west Pacific region in the Cenozoic.Namely,the subduction initiations in the Izu-BoninMariana,the Aleutian,and the Tonga-Kermadec trenches are associated with oceanic crusts of different ages,yet they occurred at roughly the same time,suggesting that they were all triggered by a maj or change in the Pacific plate.Moreover,low angle subduction induces compression rather than extension,which requires external compression forces.Given that the famous Hawaiian-Emperor bending occurred roughly at the same time with the onset of westward subductions in the west Pacific,we propose that these Cenozoic subductions were initiated by the steering of the Pacific plate,which are classified as induced initiation.Induced subduction initiation usually occurs in young ocean basins,forming single-track subduction.The closure s of Neo-Tethys Oceans were likely triggered by plume s in the south,forming northward subductions.Interestingly,the Indian plate kept on moving northward more than 50 Ma after the collision between the Indian and Eurasian continents and the break-off of the subducted oceanic slab attached to it.This strongly suggests that slab pull is not the main driving force of plate tectonics,whereas slab sliding is.
文摘Recent advances in three-dimensional numerical simulations of mantle convection have aided in approximately reproducing continental movement since the Pangea breakup at 200 Ma. These have also led to a better understanding of the thermal and mechanical coupling between mantle convection and surface plate motion and predictions of the configuration of the next supercontinent. The simulations of mantle convection from 200 Ma to the present reveals that the development of large-scale cold mantle downwellings in the North Tethys Ocean at the earlier stage of the Pangea breakup triggered the northward movement of the Indian subcontinent. The model of high temperature anomaly region beneath Pangea resulting from the thermal insulation effect support the breakup of Pangea in the real Earth time scale, as also suggested in previous geological and geodynamic models. However, considering the low radioactive heat generation rate of the depleted upper mantle, the high temperature anomaly region might have been generated by upwelling plumes with contribution of deep subducted TTG(tonalite-trondhjemite-granite) materials enriched in radiogenic elements. Integrating the numerical results of mantle convection from 200 Ma to the present, and from the present to the future, it is considered that the mantle drag force acting on the base of continents may be comparable to the slab pull force, which implies that convection in the shallower part of the mantle is strongly coupled with surface plate motion.
基金supported by the Ministry of Earth Sciences,Govt.of India
文摘We estimate the shear wave splitting parameters vis-a-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad(DHN) and Bokaro(BOKR) in the Eastern Indian Shield region. Broadband seismic data of 146 and 131 teleseismic earthquake events recorded at DHN and BOKR stations during 2007-2014 were analyzed for the present measurements.The study is carried out using rotation-correlation and transverse component minimization methods. We retain our "Good", "Fair" and "Null" measurements, and estimate the splitting parameters using 13 "Good" results for DHN and 10 "Good" results for BOKR stations. The average splitting parameters(φ,δt)for DHN and BOKR stations are found to be 50.76°±5.46° and 0.82±0.2 s and 56.30°±5.07° and0.95 ± 0.17 s, and the estimated average thicknesses of the anisotropic layers beneath these two stations are ~94 and ~109 km,respectively. The measured deviation of azimuth of the fast axis direction(0)from the absolute motion of the Indian plate ranges from ~8° to 14°. The measured deviation of azimuth of the fast axis direction(0) from the absolute motion of the Indian plate ranges from ~8° to 14°. The eastward deviation of the fast axis azimuths from absolute plate motion direction is interpreted to be caused by induced outflow from the asthenosphere. Further, the delay time found in the present analysis is close to the global average for continental shield areas, and also coherent with other studies for Indian shield regions. The five "Null" results and the lower delay time of ~0.5-0.6 s might be indicating multilayer anisotropy existing in the mantle lithosphere beneath the study area.