期刊文献+
共找到155篇文章
< 1 2 8 >
每页显示 20 50 100
Characteristics and triggering mechanisms of early negative Indian Ocean Dipole
1
作者 Yue Fang Shuangwen Sun +2 位作者 Yongcan Zu Jianhu Wang Lin Feng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期59-65,共7页
Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in... Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts. 展开更多
关键词 indian Ocean Dipole(IOD) triggering mechanism indian summer monsoon seasonal cycle negative IOD
下载PDF
Contrasting Regional Responses of Indian Summer Monsoon Rainfall to Exhausted Spring and Concurrently Emerging Summer El Nino Events
2
作者 E.K.KRISHNA KUMAR S.ABHILASH +3 位作者 SANKAR SYAM P.VIJAYKUMAR K.R.SANTOSH A.V.SREENATH 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期697-710,共14页
The inverse relationship between the warm phase of the El Nino Southern Oscillation(ENSO)and the Indian Summer Monsoon Rainfall(ISMR)is well established.Yet,some El Nino events that occur in the early months of the ye... The inverse relationship between the warm phase of the El Nino Southern Oscillation(ENSO)and the Indian Summer Monsoon Rainfall(ISMR)is well established.Yet,some El Nino events that occur in the early months of the year(boreal spring)transform into a neutral phase before the start of summer,whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season.This study investigates the distinct influences of an exhausted spring El Nino(springtime)and emerging summer El Nino(summertime)on the regional variability of ISMR.The two ENSO categories were formulated based on the time of occurrence of positive SST anomalies over the Nino-3.4 region in the Pacific.The ISMR’s dynamical and thermodynamical responses to such events were investigated using standard metrics such as the Walker and Hadley circulations,vertically integrated moisture flux convergence(VIMFC),wind shear,and upper atmospheric circulation.The monsoon circulation features are remarkably different in response to the exhausted spring El Nino and emerging summer El Nino phases,which distinctly dictate regional rainfall variability.The dynamic and thermodynamic responses reveal that exhausted spring El Nino events favor excess monsoon rainfall over eastern peninsular India and deficit rainfall over the core monsoon regions of central India.In contrast,emerging summer El Nino events negatively impact the seasonal rainfall over the country,except for a few regions along the west coast and northeast India. 展开更多
关键词 exhausted spring El Nino emerging summer El Nino indian summer monsoon Hadley and Walker circulation tropical easterly jet vertical integrated moisture flux convergence
下载PDF
Indian summer monsoon rainfall (ISMR) forecasting using time series data: A fuzzy-entropy-neuro based expert system
3
作者 Pritpal Singh 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1243-1257,共15页
This study presents a model to forecast the Indian summer monsoon rainfall(ISMR)(June-September)based on monthly and seasonal time scales. The ISMR time series data sets are classified into two parts for modeling ... This study presents a model to forecast the Indian summer monsoon rainfall(ISMR)(June-September)based on monthly and seasonal time scales. The ISMR time series data sets are classified into two parts for modeling purposes, viz.,(1) training data set(1871-1960), and(2) testing data set(1961-2014).Statistical analyzes reflect the dynamic nature of the ISMR, which couldn't be predicted efficiently by statistical and mathematical based models. Therefore, this study suggests the usage of three techniques,viz., fuzzy set, entropy and artificial neural network(ANN). Based on these techniques, a novel ISMR time series forecasting model is designed to deal with the dynamic nature of the ISMR. This model is verified and validated with training and testing data sets. Various statistical analyzes and comparison studies demonstrate the effectiveness of the proposed model. 展开更多
关键词 indian summer monsoon rainfall(ismR) Fuzzy set ENTROPY Artificial neural network(ANN) Forecasting
下载PDF
Weakening of Indian Summer Monsoon in Recent Decades 被引量:18
4
作者 武炳义 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第1期21-29,共9页
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian... The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation 展开更多
关键词 indian summer monsoon tropospheric temperature East Asia land-sea thermal contrast
下载PDF
The Summer Monsoon Onset over the Tropical Eastern Indian Ocean: The Earliest Onset Process of the Asian Summer Monsoon 被引量:11
5
作者 丁一汇 何春 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期940-950,共11页
The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically, results in... The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically, results indicate that the earliest onset process of the Asian summer monsoon occurs over the TEIO at pentad 22 (April 15-20). Unlike the abrupt onset of the South China Sea (SCS) summer monsoon, the TEIOSM onset process displays a stepwise advance. Moreover, a close relationship between the TEIOSM development and the northward push of the cross-equatorial flows over 80^-90~E is revealed. A difference vorticity center, together with the counterpart over the southern Indian Ocean, constitutes a pair of difference cyclonic vortices, which strengthens the southwesterly wind over the TEIO and the northerly wind to the west of the Indian Peninsula from the end of March to late May. Therefore, the occurrence of the southwesterly wind over the TEIO is earlier than its counterpart over the tropical western Indian Ocean, and the cross-equatorial flows emerge firstly over the TEIO rather than over the Somali area. The former increases in intensity during its northward propagation, which provides a precondition for the TEIOSM onset and its northward advance. 展开更多
关键词 indian Ocean summer monsoon ONSET
下载PDF
Relationship between Indian Ocean dipole and ENSO and their connection with the onset of South China Sea summer monsoon 被引量:3
6
作者 LIANG Zhaoning WEN Zhiping LIANG Jieyi WU Liji WU Naigeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第6期22-32,共11页
Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer ... Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer monsoon( SCSSM), the results are obtained as follows : Most of IOD events have a closely positive relation to simultaneous ENSO events in summer and autumn. IOD events in autumn ( mature phase) are also closely related to ENSO events in winter ( mature phase). When these two kinds of events happen in phase, i.e. , positive (negative) IOD events are coupled with E1 Nifío (La Nifía) events, they are always followed by late ( or early) onsets of SCSSM. On the contrary, when these two kinds of events happen out of phase, i.e. positive (negative) IOD events are coupled with La Nifia ( E1 Nifío) events, they are followed by normal onsets of SCSSM. In addition, single IOD events or single ENSO events cannot correspond well to the abnormal onset of SCSSM. 展开更多
关键词 indian Ocean dipole ENSO South China Sea summer monsoon early or late onset
下载PDF
Correlation Between the Arabian Sea Surface Temperature and the Onset Period of South Asian Summer Monsoon with Trend Analysis on the Intensity
7
作者 HAN Shuzong WANG Ruoqi +1 位作者 ZHANG Shuiping CHEN Zhentao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期930-938,共9页
The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual dis... The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual distribution to a spatially uniform distribution and then to a zonal gradual distribution.The South Asian summer monsoon intensity(SASMI)and South Asian summer monsoon direction(SASMD)indicate that the variation of the ASST is highly related to the formation of the SASM during the summer monsoon period and can contribute to the spread of the SASM from the Southwest Arabian Sea throughout all of South Asia.Results of the correlation between the ASST and SASMI for the same month and its adjacent months were the same,and the areas of the positive correlation between the ASST and SASMI significantly increased from May–June as compared to April–May.The maximum correlation coefficient was 0.86.The results of the ASST and SASMD for the same month and its adjacent months were substantially different.However,the ASST and SASMD for May and April also showed a high positive correlation with a maximum correlation coefficient of 0.61 in the southwestern Arabian Sea.Existence of the ASST had a spatially consistent and significant upward trend with a mean increase of 0.6℃during the summer monsoon period from 1980 to 2020(between April and September),whereas the SASMI had a strengthening trend along the western and southwestern regions of the Arabian Sea and the southeastern region of the Arabian Peninsula.Meanwhile,the rest of the study regions showed a declining trend.Overall,the entire study region showed a slight downward trend,and the average value decreased by 0.02ms^(−1). 展开更多
关键词 Arabian Sea surface temperature South Asian summer monsoon indian summer monsoon air-sea interaction
下载PDF
Strengthened Regulation of the Onset of the South China Sea Summer Monsoon by the Northwest Indian Ocean Warming in the Past Decade 被引量:1
8
作者 Yang AI Ning JIANG +2 位作者 Weihong QIAN Jeremy Cheuk-Hin LEUNG Yanying CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期943-952,共10页
Traditionally,a delayed(early)onset of the South China Sea summer monsoon(SCSSM)has been observed to follow a warm(cold)El Niño-Southern Oscillation(ENSO)event in winter,supporting high seasonal predictability of... Traditionally,a delayed(early)onset of the South China Sea summer monsoon(SCSSM)has been observed to follow a warm(cold)El Niño-Southern Oscillation(ENSO)event in winter,supporting high seasonal predictability of SCSSM onset.However,the empirical seasonal forecasting skill of the SCSSM onset,solely based on ENSO,has deteriorated since 2010.Meanwhile,unexpected delayed onsets of the SCSSM have also occurred in the past decade.We attribute these changes to the Northwest Indian Ocean(NWIO)warming of the sea surface.The NWIO warming has teleconnections related to(1)suppressing the seasonal convection over the South China Sea,which weakens the impacts of ENSO on SCSSM onset and delays the start of SCSSM,and(2)favoring more high-frequency,propagating moist convective activities,which enhances the uncertainty of the seasonal prediction of SCSSM onset date.Our results yield insight into the predictability of the SCSSM onset under the context of uneven ocean warming operating within the larger-scale background state of global climate change. 展开更多
关键词 indian Ocean South China Sea summer monsoon monsoon onset ENSO
下载PDF
Response of the South China Sea summer monsoon onset to air-sea heat fluxes over the Indian Ocean 被引量:2
9
作者 陈锦年 左涛 王宏娜 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第6期974-979,共6页
We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS s... We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS summer monsoon onset are analyzed. In addition, we calculate air-sea heat fluxes over the Indian Ocean using the advanced method of CORARE3.0, based on satellite remote sensing data. The onset variation cycle has remarkable interdecadal variability with cycles of 16 a and 28 a. Correlation analysis between air-sea heat fluxes in the Indian Ocean and the SCS summer monsoon indicates that there is a remarkable lag correlation between them. This result has important implications for prediction of the SCS summer monsoon, and provides a scientific basis for further study of the onset process of this monsoon and its prediction. Based on these results, a linear regression equation is obtained to predict the onset date of the monsoon in 2011 and 2012. The forecast is that the onset date of 2011 will be normal or 1 pentad earlier than the normal year, while the onset date in 2012 will be 1-2 pentads later. 展开更多
关键词 南海夏季风爆发 中国南海 印度洋 热通量 年代际变化特征 发病过程 卫星遥感数据 线性回归方程
下载PDF
The cold pool of the Bay of Bengal and its association with the break phase of the Indian summer monsoon 被引量:1
10
作者 Mary Swapna GEORGE Porathur Vareed JOSEPH +2 位作者 Kochuparampil Ajith JOSEPH Laurent BERTINO Ola Mathias JOHANNESSEN 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第3期214-220,共7页
During the summer monsoon season, strong coastal upwelling occurs along the southwest coast of India and at the southern tip of India, which cools the surface temperature of the waters around these regions. The summer... During the summer monsoon season, strong coastal upwelling occurs along the southwest coast of India and at the southern tip of India, which cools the surface temperature of the waters around these regions. The summer monsoon current carries the upwelled cold waters into the Bay of Bengal and forms the ‘cold pool of the Bay of Bengal', with its core south of Sri Lanka and over the southcentral Bay of Bengal. The present study focuses on the intrusion of these cold waters into the south of the Bay of Bengal, its interannual variability, and its association with the surface wind during the break phase of the summer monsoon, when strong westerly surface winds flow south of 10°N.The authors hypothesize that the enhanced cooling in the cold pool region during monsoon spells is associated with the strong westerly wind stress there during the break spells of the monsoon.Seven cases of long break monsoon spells that occurred during the nine years from 2001 to 2009 are analyzed, and the results confirm our hypothesis. 展开更多
关键词 Cold pool indian Ocean Bay of Bengal indian summer monsoon break monsoon
下载PDF
Variation of Zonal Winds in the Upper Troposphere and Lower Stratosphere in Association with Deficient and Excess Indian Summer Monsoon Scenario 被引量:1
11
作者 Vazhathottathil Madhu 《Atmospheric and Climate Sciences》 2014年第4期685-695,共11页
The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four mo... The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four months (June to September) of the southwest monsoon season. Variability in the quantum of rainfall during the monsoon season has profound impacts on water resources, power generation, agriculture, economics and ecosystems in the country. The inter annual variability of Indian Summer Monsoon Rainfall (ISMR) depends on atmospheric and oceanic conditions prevailed during the season. In this study we have made an attempt to understand the variation of the of zonal winds in the tropical Upper Troposphere and Lower Stratosphere (UT/LS) region during deficient and Excess rainfall years of Indian summer monsoon and its relation to Indian Summer Monsoon Rainfall (ISMR). It is found that in the equatorial Upper Troposphere zonal winds have westerly anomalies during deficient rainfall year’s and easterly anomaly during excess rainfall years of Indian summer monsoon and opposite zonal wind anomaly is noted in the equatorial Lower Stratosphere during the deficient and excess rainfall years of Indian summer monsoon. It is also found that the June to September upper troposphere zonal winds averaged between 15°N and 15°S latitudes have a long-term trend during 1960 to 1998. Over this period the tropical easterlies and the tropical jet stream have weakened with time. 展开更多
关键词 indian summer monsoon Upper Troposphere/Lower STRATOSPHERE ZONAL Winds
下载PDF
Intraseasonal Oscillation of Tropospheric Ozone over the Indian Summer Monsoon Region
12
作者 Yuli ZHANG Chuanxi LIU +1 位作者 Yi LIU Rui YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第4期417-430,共14页
Boreal summer intraseasonal oscillation(BSISO) of lower tropospheric ozone is observed in the Indian summer monsoon(ISM) region on the basis of ERA-Interim reanalysis data and ozonesonde data from the World Ozone and ... Boreal summer intraseasonal oscillation(BSISO) of lower tropospheric ozone is observed in the Indian summer monsoon(ISM) region on the basis of ERA-Interim reanalysis data and ozonesonde data from the World Ozone and Ultraviolet Radiation Data Centre. The 30–60-day intraseasonal variation of lower-tropospheric ozone shows a northwest–southeast pattern with northeastward propagation in the ISM region. The most significant ozone variations are observed in the Maritime Continent and western North Pacific. In the tropics, ozone anomalies extend from the surface to 300 hPa; however, in extratropical areas, it is mainly observed under 500 hPa. Precipitation caused by BSISO plays a dominant role in modulating the BSISO of lower-tropospheric ozone in the tropics, causing negative/positive ozone anomalies in phases 1–3/5–6. As the BSISO propagates northeastward to the western North Pacific, horizontal transport becomes relatively more important, increasing/reducing tropospheric ozone via anticyclonic/cyclonic anomalies over the western North Pacific in phases 3–4/7–8.As two extreme conditions of the ISM, most of its active/break events occur in BSISO phases 4–7/1–8 when suppressed/enhanced convection appears over the equatorial eastern Indian Ocean and enhanced/suppressed convection appears over India, the Bay of Bengal, and the South China Sea. As a result, the BSISO of tropospheric ozone shows significant positive/negative anomalies over the Maritime Continent, as well as negative/positive anomalies over India, the Bay of Bengal,and the South China Sea in active/break spells of the ISM. This BSISO of tropospheric ozone is more remarkable in break spells than in active spells of the ISM, due to the stronger amplitude of BSISO in the former. 展开更多
关键词 BOREAL summer INTRASEASONAL oscillation TROPOSPHERIC ozone indian summer monsoon active/break spell
下载PDF
Global Annual Mean Surface Air Temperature Anomalies and Their Link with Indian Summer Monsoon Failures
13
作者 S.S.Dugam S.B.Kakade R.K.Verma 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1990年第2期245-248,共4页
Analysis of the global mean annual temperature anomalies based on land and marine data for the last 88 years (1901-1988) of this century has been carried out with a view to find any relationship with failures in India... Analysis of the global mean annual temperature anomalies based on land and marine data for the last 88 years (1901-1988) of this century has been carried out with a view to find any relationship with failures in Indian summer monsoon rainfall. On the climatological scale (i.e. 30 years) it has been noticed that there is an abnormal increase in the frequency of drought years during epochs of global warming and cooling, while it is considerably less when global temperatures are near normal. Results are unchanged even when the data are filtered out for ENSO (El-Nino Southern Oscillation) effect.It has also been noticed that during warm and cold epochs in global temperatures the amount of summer monsoon rainfall decreases as compared to the rainfall during a normal temperature epoch. 展开更多
关键词 In Global Annual Mean Surface Air Temperature Anomalies and Their Link with indian summer monsoon Failures ENSO Mean
下载PDF
RELATIONSHIPS BETWEEN AUTUMN INDIAN OCEAN DIPOLE MODE AND THE STRENGTH OF SCS SUMMER MONSOON
14
作者 李东辉 张瑰 +2 位作者 朱益民 谭言科 王学忠 《Journal of Tropical Meteorology》 SCIE 2007年第1期29-32,共4页
Based on 1948 - 2004 monthly Reynolds Sea Surface Temperature (SST) and NCEP/NCAR atmospheric reanalysis data, the relationships between autumn Indian Ocean Dipole Mode (IODM) and the strength of South China Sea (SCS)... Based on 1948 - 2004 monthly Reynolds Sea Surface Temperature (SST) and NCEP/NCAR atmospheric reanalysis data, the relationships between autumn Indian Ocean Dipole Mode (IODM) and the strength of South China Sea (SCS) Summer Monsoon are investigated through the EOF and smooth correlation methods. The results are as the following. (1) There are two dominant modes of autumn SSTA over the tropical Indian Ocean. They are the uniformly signed basin-wide mode (USBM) and Indian Ocean dipole mode (IODM), respectively. The SSTA associated with USBM are prevailing decadal to interdecadal variability characterized by a unanimous pattern, while the IODM mainly represents interannual variability of SSTA. (2) When positive (negative) IODM exists over the tropical Indian Ocean during the preceding fall, the SCS summer monsoon will be weak (strong). The negative correlation between the interannual variability of IODM and that of SCS summer monsoon is significant during the warm phase of long-term trend but insignificant during the cool phase. (3) When the SCS summer monsoon is strong (weak), the IODM will be in its positive (negative) phase during the following fall season. The positive correlation between the interannual variability of SCS summer monsoon and that of IODM is significant during both the warm and cool phase of the long-term trend, but insignificant during the transition between the two phases. 展开更多
关键词 热带 印度洋 偶极模型 年变化
下载PDF
Relationships between Interannual and Intraseasonal Variations of the Asian–Western Pacific Summer Monsoon Hindcasted by BCC CSM 1.1(m) 被引量:9
15
作者 LIU Xiangwen WU Tongwen +6 位作者 YANG Song LI Qiaoping CHENG Yanjie LIANG Xiaoyun FANG Yongjie JIE Weihua NIE Suping 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1051-1064,共14页
Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagn... Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of E1 Nifio-Southern Oscillation with forecast time in the model. 展开更多
关键词 interannual variability intraseasonal variability western North Pacific summer monsoon indian summer monsoon
下载PDF
The Interannual Variations of Summer Precipitation in the Northern Indian Ocean Associated with ENSO 被引量:2
16
作者 YANG Ya-Li DU Yan +2 位作者 WU Yan-Ling HUANG Gang ZHANG Yong-Sheng 《Atmospheric and Oceanic Science Letters》 2012年第4期301-305,共5页
Using rainfall data from the Global Precipitation Climatology Project(GPCP),NOAA extended reconstruction sea surface temperature(ERSST),and NCEP/NCAR reanalysis,this study investigates the interannual variation of sum... Using rainfall data from the Global Precipitation Climatology Project(GPCP),NOAA extended reconstruction sea surface temperature(ERSST),and NCEP/NCAR reanalysis,this study investigates the interannual variation of summer rainfall southwest of the Indian Peninsula and the northeastern Bay of Bengal associated with ENSO.The composite study indicates a decreased summer rainfall southwest of the Indian Peninsula and an increase in the northeastern Bay of Bengal during the developing phase,but vice versa during the decay phase of El Ni o.Further regression analysis demonstrates that abnormal rainfall in the above two regions is controlled by different mechanisms.Southwest of the Indian Peninsula,the precipitation anomaly is related to local convection and water vapor flux in the decay phase of El Ni o.The anomalous cyclone circulation at the lower troposphere helps strengthen rainfall.In the northeastern Bay of Bengal,the anomalous rainfall depends on the strength of the Indian southwest summer monsoon(ISSM).A strong/weak ISSM in the developing/decay phase of El Ni o can bring more/less water vapor to strengthen/weaken the local summer precipitation. 展开更多
关键词 夏季降水 北印度洋 ENSO 年际变化 西南季风 孟加拉湾 夏季降雨 降水异常
下载PDF
THE WARMING MECHANISM IN THE SOUTHERN ARABIAN SEA DURING THE DEVELOPMENT OF INDIAN OCEAN DIPOLE EVENTS 被引量:1
17
作者 桂发银 李崇银 +2 位作者 谭言科 黎鑫 夏淋淋 《Journal of Tropical Meteorology》 SCIE 2016年第2期159-171,共13页
This study aims to explore the relative role of oceanic dynamics and surface heat fluxes in the warming of southern Arabian Sea and southwest Indian Ocean during the development of Indian Ocean Dipole(IOD) events by u... This study aims to explore the relative role of oceanic dynamics and surface heat fluxes in the warming of southern Arabian Sea and southwest Indian Ocean during the development of Indian Ocean Dipole(IOD) events by using National Center for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) daily reanalysis data and Global Ocean Data Assimilation System(GODAS) monthly mean ocean reanalysis data from 1982 to2013,based on regression analysis,Empirical Orthogonal Function(EOF) analysis and combined with a 21/2layer dynamic upper-ocean model.The results show that during the initial stage of IOD events,warm downwelling Rossby waves excited by an anomalous anticyclone over the west Indian Peninsula,southwest Indian Ocean and southeast Indian Ocean lead to the warming of the mixed layer by reducing entrainment cooling.An anomalous anticyclone over the west Indian Peninsula weakens the wind over the Arabian Sea and Somali coast,which helps decrease the sea surface heat loss and shallow the surface mixed layer,and also contributes to the sea surface temperature(SST) warming in the southern Arabian Sea by inhibiting entrainment.The weakened winds increase the SST along the Somali coast by inhibiting upwelling and zonal advection.The wind and net sea surface heat flux anomalies are not significant over the southwest Indian Ocean.During the antecedent stage of IOD events,the warming of the southern Arabian Sea is closely connected with the reduction of entrainment cooling caused by the Rossby waves and the weakened wind.With the appearance of an equatorial easterly wind anomaly,the warming of the southwest Indian Ocean is not only driven by weaker entrainment cooling caused by the Rossby waves,but also by the meridional heat transport carried by Ekman flow.The anomalous sea surface heat flux plays a key role to damp the warming of the west pole of the IOD. 展开更多
关键词 Arabian Sea summer monsoon indian Ocean Dipole 21/2layer dynamic upper-ocean model
下载PDF
Recent Changes of Northern Indian Ocean Summer Rainfall Based on CMIP5 Multi-Model 被引量:1
18
作者 YANG Yali DU Yan +1 位作者 ZHANG Yuhong CHENG Xuhua 《Journal of Ocean University of China》 SCIE CAS 2013年第2期201-208,共8页
This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled Gene... This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate. 展开更多
关键词 北印度洋 夏季降水 平均降雨量 型号 耦合环流模式 模型模拟 印度洋海温 夏季风环流
下载PDF
Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon 被引量:1
19
作者 Wen CHEN Renhe ZHANG +12 位作者 Renguang WU Zhiping WEN Liantong ZHOU Lin WANG Peng HU Tianjiao MA Jinling PIAO Lei SONG Zhibiao WANG Juncong LI Hainan GONG Jingliang HUANGFU Yong LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第8期1429-1456,共28页
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i... Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability. 展开更多
关键词 Asian monsoon multi-scale climate variability monsoon onset East Asian summer monsoon East Asian winter monsoon indian summer monsoon
下载PDF
NUMERICAL SIMULATION OF INFLUENCE OF INDIAN OCEAN SSTAON WEATHER AND CLIMATE IN ASIAN MONSOON REGION
20
作者 晏红明 肖子牛 《Journal of Tropical Meteorology》 SCIE 2000年第2期151-161,共11页
Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Oce... Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Ocean. The IAP9L model, which is developed at the Institute of Atmospheric Physics of the Chinese Academy of Science, is used to simulate the influence of the Indian Ocean SSTA on the general circulation and weather/climate anomalies in the monsoon region of Asia. It is found that the warm (cool) SSTA in the equatorial low latitudes of the Indian Ocean triggers winter (summer) teleconnection patterns in middle and higher latitudes of the Northern Hemisphere that are similar to PNA or EAP. They play a very important role in the anomaly of circulation or weather and climate in the middle and lower latitudes of the Asian summer monsoon region. With the warm (cool) SSTA forcing in the Indian Ocean, the Asian summer monsoon sets up at a late (early) date and withdraws at a early (late) date, lasting for a short (long) duration at a weak (strong) intensity. The Indian Ocean SSTA is shown to be an indicator for precipitation variation in China. 展开更多
关键词 Asian summer monsoon indian Ocean SSTA numerical simulation
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部