Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
The Indonesian Throughflow(ITF), which connects the tropical Pacific and Indian oceans, plays important roles in the inter-ocean water exchange and regional or even global climate variability. The Makassar Strait is t...The Indonesian Throughflow(ITF), which connects the tropical Pacific and Indian oceans, plays important roles in the inter-ocean water exchange and regional or even global climate variability. The Makassar Strait is the main inflow passage of the ITF, carrying about 77% of the total ITF volume transport. In this study, we analyze the simulated ITF in the Makassar Strait in the Simple Ocean Data Assimilation version 3(SODA3) datasets. A total of nine ensemble members of the SODA3 datasets, of which are driven by different surface forcings and bulk formulas, and with or without data assimilation, are used in this study. The annual mean water transports(i.e.,volume, heat and freshwater) are related to the combination of surface forcing and bulk formula, as well as whether data assimilation is employed. The phases of the seasonal and interannual variability in water transports cross the Makassar Strait, are basically consistent with each other among the SODA3 ensemble members. The interannual variability in Makassar Strait volume and heat transports are significantly correlated with El Ni?oSouthern Oscillation(ENSO) at time lags of-6 to 7 months. There is no statistically significant correlation between the freshwater transport and the ENSO. The Makassar Strait water transports are not significantly correlated with the Indian Ocean Dipole(IOD), which may attribute to model deficiency in simulating the propagation of semiannual Kelvin waves from the Indian Ocean to the Makassar Strait.展开更多
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes...This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.展开更多
Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in...Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
The basic concept of phytosociology is crucial for the assessment of species composition and dynamic ecological succession of forests supporting ecological services,functions,disturbance,and resilience that lead to th...The basic concept of phytosociology is crucial for the assessment of species composition and dynamic ecological succession of forests supporting ecological services,functions,disturbance,and resilience that lead to the development of integrated areas such as ecological niche modeling and contribute to identifying the valuable bio-indicators which can be used in framing conservation and management planning.B.utilis is one of the most dominant tree species of treeline ecotone in the Himalayan Region.The species is also considered as indicator species for monitoring the past and recent climate change impact.The current study was carried out in the natural populations of B.utilis from the sub-alpine zone of North-western Indian Himalaya.The birch dominated forest harbors a total of 305 plant species comprising Angiosperms(51 families,160 genera and 277 species),Gymnosperms(03 families,05 genera and 07 species)and Pteridophytes(07 families,11 genera and 21 species)with Asteraceae,Ranunculaceae and Rosaceae as dominant family.Birch forests are found dominant in shady moist habitat and North West aspect.Geographical characteristics,anthropogenic and developmental activities affect the population structure of B.utilis and associated species.However,the species has fair regeneration status in the study area.The acidic nature of soil pH and spatial variation in edaphic characteristics may be due to geographical differences,rooting patterns and litter accumulation of below and above-ground vegetation.Biomass estimation of a representative population of B.utilis from each site showed that TAGBD,TCD and TBD were found maximum in ST3(Hamta Pass II site).The CCA analysis determined that environmental variables such as altitude,organic matter,available phosphorous,organic carbon,available nitrogen,and electrical conductivity played a significant role in determining tree species composition and distribution in B.utilis dominated forests.展开更多
Microeukaryotes play a vital role in shaping marine ecosystems,especially in marine productivity,the microbial food web,and carbon cycle.The Indian Ocean is one of the largest oligotrophic areas in the world,but littl...Microeukaryotes play a vital role in shaping marine ecosystems,especially in marine productivity,the microbial food web,and carbon cycle.The Indian Ocean is one of the largest oligotrophic areas in the world,but little is known about the biodiversity of microeukaryotes in the area.The community composition and geographical distribution of microeukaryotes collected from the surface(SUR)and deep chlorophyll maximum(DCM)layers in the southwestern Indian Ocean were studied using high-throughput sequencing of the 18S rRNA gene.The metagenomic data helped quantify the impact of environmental factors on microeukaryotic communities.The relative abundance of different taxa groups exhibited distinct patterns between SUR and DCM layers,except for the most dominant Dinoflagellata that accounted for more than 40.6%abundance in each sample.Radiolaria was much more abundant in the nutrient-rich DCM layer than the SUR layer.The community similarity of microeukaryotes decreased with increasing of geographic distance,whereas the temperature and inorganic nitrogen were the most important environmental parameters to community structure.Abundant communities were more influenced by dispersal limitations and rare communities were more responsive to environmental factors.Correlation network analyses revealed strong biotic interactions indicative of parasitism,predation and competition,and their contribution to microeukaryotic population in diverse environments.Overall,this study provided insights into the biodiversity of microeukaryotes by characterizing the differences between water layers and identifying the driving factors in the ocean.展开更多
Island ecosystems support diverse aquatic invertebrate communities comprising endemic taxa.Documentation of existing species is important for conservation.In this study,a checklist of marine opisthobranch from the Rep...Island ecosystems support diverse aquatic invertebrate communities comprising endemic taxa.Documentation of existing species is important for conservation.In this study,a checklist of marine opisthobranch from the Republic of Mauritius is presented.A combination of benthic surveys(50 m×5 m in triplicates),rover diving techniques and photo documentation were used over two years(2018–2020)within 35 sheltered and unsheltered lagoons.Morphological and molecular analysis were used for identification.Species composition within sheltered and unsheltered areas in Mauritius was estimated using the Bray-Curtis similarity.The checklist featured 117 species belonging to 61 genera and 28families,of which 13 are new records.The findings increased the knowledge of opisthobranch diversity from the Mauritius by 15.4%.Among the listed species,the distribution range of Cyerce nigra,Actinocyclus papillatus,and Phyllidia picta extended from the Western Pacific to the South Western Indian Ocean.Molecular analysis of the undescribed Gymnodoris sp.showed it resembled Gymnodoris sp.from Hawaii and were different by a genetic distance value of 10.6%.The species richness and evenness were higher within the sheltered regions of Mauritius which harboured the food resource of opisthobranch.These areas as compared to unsheltered regions were heavily populated,suggesting the probable influence of wave actions on opisthobranch diversity and abundance.The order Nudibranchia was reported as most speciose,with 86 species.The Sacoglossa and Nudibranchia were observed only on macroalgae and sponges respectively.High abundance was also recorded on shipwrecks which are the most common form of artificial reefs.With the inclusion of observations from previous studies,201species belonging to 94 genera and 36 families are now known from the Mauritius.展开更多
We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in ...We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in geothermometry,and potentially in identifying regions of delamination.How:We are extending our Sn/Lg method beyond amplitude ratios of regional seismic phases measured on arrays(array Sn/Lg method,Wang and Klemperer,2021)to include frequency proxies for earthquake depth relative to Moho(Wang&Klemperer,2024a,b;Harris et al.,2024).展开更多
The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East ...The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.展开更多
This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)...This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.展开更多
In this study, 32 black rice genotypes spanning diverse geographies in India were evaluated at both phenotypic and DNA sequence levels to gain insights into their genetic makeup. Significant variations were observed f...In this study, 32 black rice genotypes spanning diverse geographies in India were evaluated at both phenotypic and DNA sequence levels to gain insights into their genetic makeup. Significant variations were observed for 14 agro-morphological traits, showing correlations among several yield-related traits.展开更多
In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-si...In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.展开更多
The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested tha...The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested that the Indian Ocean(IO)SST forcing and soil moisture anomaly over the Indochina Peninsula(ICP)were responsible for this unexpected event.However,the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event,especially their linkage with atmospheric circulation changes,remain unclear.By using observations and numerical simulations,this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020.Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds.The intensification of the warm condition further magnified the land thermal effects,which in turn facilitated the westward extension of the western North Pacific subtropical high(WNPSH)in June‒July.The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB,thereby contributing to the 2020 mei-yu.In contrast,the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture.The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model.Their synergistic impacts yield a notable 32%increase in YRB precipitation.Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.展开更多
Eliminating tuberculosis(TB)is among India's top public health priorities[1].Despite the considerable progress in providing quality TB care services,the Global TB report-2022 reveals that India is amongst the eigh...Eliminating tuberculosis(TB)is among India's top public health priorities[1].Despite the considerable progress in providing quality TB care services,the Global TB report-2022 reveals that India is amongst the eight high TB burden countries that contributed to more than two-thirds(68.3%)of the global TB cases[2].To strengthen and aid the TB elimination efforts by 2025,five years ahead of the sustainable development goal target,the Government of India,under the program,promotes intersectoral convergence with various public sector departments and the private sector.The national multisectoral action framework for TB-free India promotes private-private or public-private partnerships for sustainable and impactful Corporate Social Responsibility initiatives[3].展开更多
As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the...As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the mixed layer depth(MLD).We investigated the impact of SST,OHC,and MLD on fluctuations of YFT catch in the western/eastern Indian Ocean using the long time series of 63-year environmental and YFT datasets.We found that the impact of SST on YFT was heavily overestimated in the past,and MLD plays a more critical role in the YFT catch fluctuation.When the MLD deepens(>34.8 m),SST was more influential in predicting the catches of YFT than OHC in the western Indian Ocean,and OHC was more critical to YFT than SST in the eastern Indian Ocean.However,when the MLD shallows(<34.8 m),MLD was more vital to predict the catch per unit effort(CPUE)of YFT than SST/OHC in the western.After 2000,there was an asynchronous pattern of YFT CPUE induced by higher frequency variations and ocean hiatus of SST/OHC signals in the western and eastern Indian Oceans basins.The impact of the subsurface hiatus may induce the decrease of YFT in the eastern Indian Ocean.The above findings clarified a non-stationary relationship between the environmental factors and catches of YFT and provided new insights into variations in YFT abundance.展开更多
‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown...‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown rapidly within a short time.In light of the new trend set by the generation,this study aimed to explore reasons for selfie-taking and selfie-posting on social media and their effects on the social and psychological lives of young adults.A purposive sampling method was adopted to select 20 Indian citizens,between 18 and 24 years.The data were collected through semi-structured interviews and analysed using thematic analysis.Selfie-taking and posting on social media give positive feelings,and it acts as a mood modifier dependent mostly on the favourability and feedback about the post which in turn affects emotions and self-satisfaction.展开更多
Organizedby The Chinese Society for Metals The Chinese Ceramic Society Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.Sponsored by Refractories Committee of The Chinese Society for Metals Sinosteel Luona...Organizedby The Chinese Society for Metals The Chinese Ceramic Society Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.Sponsored by Refractories Committee of The Chinese Society for Metals Sinosteel Luonai Materials Technology Corporation Co-Sponsoredby State Key Laboratory of Advanced Refractories The State Key Laboratory of Refractories and Metallurgy Refractories Press Indian Refractory Makers Association The Federation for International Refractory Research and Education.展开更多
In 2023, India continued to advance its cooperation with the United States. In January, the high-profile initiative on Critical and Emerging Technology(iCET) was launched. In June, Indian Prime Minister Narendra Modi ...In 2023, India continued to advance its cooperation with the United States. In January, the high-profile initiative on Critical and Emerging Technology(iCET) was launched. In June, Indian Prime Minister Narendra Modi made his first official state visit to the United States. In September.展开更多
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
基金The Fund of Laoshan Laboratory under contract No. LSKJ202202700the National Natural Science Foundation of China under contract Nos 42076023, 42076024 and 41876027the Global Change and Air-Sea Interaction Ⅱ Project under contract No.GASI-01-AIP-STwin。
文摘The Indonesian Throughflow(ITF), which connects the tropical Pacific and Indian oceans, plays important roles in the inter-ocean water exchange and regional or even global climate variability. The Makassar Strait is the main inflow passage of the ITF, carrying about 77% of the total ITF volume transport. In this study, we analyze the simulated ITF in the Makassar Strait in the Simple Ocean Data Assimilation version 3(SODA3) datasets. A total of nine ensemble members of the SODA3 datasets, of which are driven by different surface forcings and bulk formulas, and with or without data assimilation, are used in this study. The annual mean water transports(i.e.,volume, heat and freshwater) are related to the combination of surface forcing and bulk formula, as well as whether data assimilation is employed. The phases of the seasonal and interannual variability in water transports cross the Makassar Strait, are basically consistent with each other among the SODA3 ensemble members. The interannual variability in Makassar Strait volume and heat transports are significantly correlated with El Ni?oSouthern Oscillation(ENSO) at time lags of-6 to 7 months. There is no statistically significant correlation between the freshwater transport and the ENSO. The Makassar Strait water transports are not significantly correlated with the Indian Ocean Dipole(IOD), which may attribute to model deficiency in simulating the propagation of semiannual Kelvin waves from the Indian Ocean to the Makassar Strait.
文摘This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.
基金The Basic Scientific Fund for National Public Research Institutes of China under contract No.2022S02the National Natural Science Foundation of China under contract No.41976021.
文摘Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金the GBPI Mountain Division-Himalayan Research Fellowship for financial support
文摘The basic concept of phytosociology is crucial for the assessment of species composition and dynamic ecological succession of forests supporting ecological services,functions,disturbance,and resilience that lead to the development of integrated areas such as ecological niche modeling and contribute to identifying the valuable bio-indicators which can be used in framing conservation and management planning.B.utilis is one of the most dominant tree species of treeline ecotone in the Himalayan Region.The species is also considered as indicator species for monitoring the past and recent climate change impact.The current study was carried out in the natural populations of B.utilis from the sub-alpine zone of North-western Indian Himalaya.The birch dominated forest harbors a total of 305 plant species comprising Angiosperms(51 families,160 genera and 277 species),Gymnosperms(03 families,05 genera and 07 species)and Pteridophytes(07 families,11 genera and 21 species)with Asteraceae,Ranunculaceae and Rosaceae as dominant family.Birch forests are found dominant in shady moist habitat and North West aspect.Geographical characteristics,anthropogenic and developmental activities affect the population structure of B.utilis and associated species.However,the species has fair regeneration status in the study area.The acidic nature of soil pH and spatial variation in edaphic characteristics may be due to geographical differences,rooting patterns and litter accumulation of below and above-ground vegetation.Biomass estimation of a representative population of B.utilis from each site showed that TAGBD,TCD and TBD were found maximum in ST3(Hamta Pass II site).The CCA analysis determined that environmental variables such as altitude,organic matter,available phosphorous,organic carbon,available nitrogen,and electrical conductivity played a significant role in determining tree species composition and distribution in B.utilis dominated forests.
基金Supported by the China Ocean Mineral Resources R&D Association(Nos.DY135-E2-4-04,DY135-E2-4-06)the Global Change and AirSea Interaction Program(Nos.GASI-03-01-03-03,GASI-02-IND-STSspr)。
文摘Microeukaryotes play a vital role in shaping marine ecosystems,especially in marine productivity,the microbial food web,and carbon cycle.The Indian Ocean is one of the largest oligotrophic areas in the world,but little is known about the biodiversity of microeukaryotes in the area.The community composition and geographical distribution of microeukaryotes collected from the surface(SUR)and deep chlorophyll maximum(DCM)layers in the southwestern Indian Ocean were studied using high-throughput sequencing of the 18S rRNA gene.The metagenomic data helped quantify the impact of environmental factors on microeukaryotic communities.The relative abundance of different taxa groups exhibited distinct patterns between SUR and DCM layers,except for the most dominant Dinoflagellata that accounted for more than 40.6%abundance in each sample.Radiolaria was much more abundant in the nutrient-rich DCM layer than the SUR layer.The community similarity of microeukaryotes decreased with increasing of geographic distance,whereas the temperature and inorganic nitrogen were the most important environmental parameters to community structure.Abundant communities were more influenced by dispersal limitations and rare communities were more responsive to environmental factors.Correlation network analyses revealed strong biotic interactions indicative of parasitism,predation and competition,and their contribution to microeukaryotic population in diverse environments.Overall,this study provided insights into the biodiversity of microeukaryotes by characterizing the differences between water layers and identifying the driving factors in the ocean.
文摘Island ecosystems support diverse aquatic invertebrate communities comprising endemic taxa.Documentation of existing species is important for conservation.In this study,a checklist of marine opisthobranch from the Republic of Mauritius is presented.A combination of benthic surveys(50 m×5 m in triplicates),rover diving techniques and photo documentation were used over two years(2018–2020)within 35 sheltered and unsheltered lagoons.Morphological and molecular analysis were used for identification.Species composition within sheltered and unsheltered areas in Mauritius was estimated using the Bray-Curtis similarity.The checklist featured 117 species belonging to 61 genera and 28families,of which 13 are new records.The findings increased the knowledge of opisthobranch diversity from the Mauritius by 15.4%.Among the listed species,the distribution range of Cyerce nigra,Actinocyclus papillatus,and Phyllidia picta extended from the Western Pacific to the South Western Indian Ocean.Molecular analysis of the undescribed Gymnodoris sp.showed it resembled Gymnodoris sp.from Hawaii and were different by a genetic distance value of 10.6%.The species richness and evenness were higher within the sheltered regions of Mauritius which harboured the food resource of opisthobranch.These areas as compared to unsheltered regions were heavily populated,suggesting the probable influence of wave actions on opisthobranch diversity and abundance.The order Nudibranchia was reported as most speciose,with 86 species.The Sacoglossa and Nudibranchia were observed only on macroalgae and sponges respectively.High abundance was also recorded on shipwrecks which are the most common form of artificial reefs.With the inclusion of observations from previous studies,201species belonging to 94 genera and 36 families are now known from the Mauritius.
基金supported by Stanford University and by NSF-EAR-1627930CAS participation by CAS(XDB0710000)NSFC(92355301,42074067)。
文摘We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in geothermometry,and potentially in identifying regions of delamination.How:We are extending our Sn/Lg method beyond amplitude ratios of regional seismic phases measured on arrays(array Sn/Lg method,Wang and Klemperer,2021)to include frequency proxies for earthquake depth relative to Moho(Wang&Klemperer,2024a,b;Harris et al.,2024).
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021MD079)the APEC Cooperation Fund(No.WJ1323001)the Asian Cooperation Fund(No.WJ1223001)。
文摘The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.
基金supported by the National Natural Science Foundation of China(Grant No.41991283).
文摘This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.
文摘In this study, 32 black rice genotypes spanning diverse geographies in India were evaluated at both phenotypic and DNA sequence levels to gain insights into their genetic makeup. Significant variations were observed for 14 agro-morphological traits, showing correlations among several yield-related traits.
基金supported by the Taishan Scholars Programs of Shandong Province(No.tsqn201909165)the Global Change and Air-Sea Interaction Program(Nos.GASI-04-QYQH-03,GASI-01-WIND-STwin)the National Natural Science Foundation of China(Nos.41876028,42349910).
文摘In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801603).
文摘The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested that the Indian Ocean(IO)SST forcing and soil moisture anomaly over the Indochina Peninsula(ICP)were responsible for this unexpected event.However,the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event,especially their linkage with atmospheric circulation changes,remain unclear.By using observations and numerical simulations,this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020.Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds.The intensification of the warm condition further magnified the land thermal effects,which in turn facilitated the westward extension of the western North Pacific subtropical high(WNPSH)in June‒July.The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB,thereby contributing to the 2020 mei-yu.In contrast,the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture.The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model.Their synergistic impacts yield a notable 32%increase in YRB precipitation.Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.
文摘Eliminating tuberculosis(TB)is among India's top public health priorities[1].Despite the considerable progress in providing quality TB care services,the Global TB report-2022 reveals that India is amongst the eight high TB burden countries that contributed to more than two-thirds(68.3%)of the global TB cases[2].To strengthen and aid the TB elimination efforts by 2025,five years ahead of the sustainable development goal target,the Government of India,under the program,promotes intersectoral convergence with various public sector departments and the private sector.The national multisectoral action framework for TB-free India promotes private-private or public-private partnerships for sustainable and impactful Corporate Social Responsibility initiatives[3].
基金Supported by the National Natural Science Foundation of China(Nos.42090044,42376175,U2006211)the Marine S&T Fund of Laoshan Laboratory(Qingdao)(No.LSKJ202204302)。
文摘As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the mixed layer depth(MLD).We investigated the impact of SST,OHC,and MLD on fluctuations of YFT catch in the western/eastern Indian Ocean using the long time series of 63-year environmental and YFT datasets.We found that the impact of SST on YFT was heavily overestimated in the past,and MLD plays a more critical role in the YFT catch fluctuation.When the MLD deepens(>34.8 m),SST was more influential in predicting the catches of YFT than OHC in the western Indian Ocean,and OHC was more critical to YFT than SST in the eastern Indian Ocean.However,when the MLD shallows(<34.8 m),MLD was more vital to predict the catch per unit effort(CPUE)of YFT than SST/OHC in the western.After 2000,there was an asynchronous pattern of YFT CPUE induced by higher frequency variations and ocean hiatus of SST/OHC signals in the western and eastern Indian Oceans basins.The impact of the subsurface hiatus may induce the decrease of YFT in the eastern Indian Ocean.The above findings clarified a non-stationary relationship between the environmental factors and catches of YFT and provided new insights into variations in YFT abundance.
文摘‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown rapidly within a short time.In light of the new trend set by the generation,this study aimed to explore reasons for selfie-taking and selfie-posting on social media and their effects on the social and psychological lives of young adults.A purposive sampling method was adopted to select 20 Indian citizens,between 18 and 24 years.The data were collected through semi-structured interviews and analysed using thematic analysis.Selfie-taking and posting on social media give positive feelings,and it acts as a mood modifier dependent mostly on the favourability and feedback about the post which in turn affects emotions and self-satisfaction.
文摘Organizedby The Chinese Society for Metals The Chinese Ceramic Society Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.Sponsored by Refractories Committee of The Chinese Society for Metals Sinosteel Luonai Materials Technology Corporation Co-Sponsoredby State Key Laboratory of Advanced Refractories The State Key Laboratory of Refractories and Metallurgy Refractories Press Indian Refractory Makers Association The Federation for International Refractory Research and Education.
文摘In 2023, India continued to advance its cooperation with the United States. In January, the high-profile initiative on Critical and Emerging Technology(iCET) was launched. In June, Indian Prime Minister Narendra Modi made his first official state visit to the United States. In September.