期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enzymatic synthesis of indigo derivatives by tuning P450 BM3 peroxygenases
1
作者 Li Ma Tianjian Sun +10 位作者 Yunjie Liu Yue Zhao Xiaohui Liu Yuxuan Li Xinwei Chen Lin Cao Qianqian Kang Jiawei Guo Lei Du Wei Wang Shengying Li 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第3期452-461,共10页
Indigoids,a class of bis-indoles,have long been applied in dyeing,food,and pharmaceutical industries.Recently,interest in these‘old’molecules has been renewed in the field of organic semiconductors as functional bui... Indigoids,a class of bis-indoles,have long been applied in dyeing,food,and pharmaceutical industries.Recently,interest in these‘old’molecules has been renewed in the field of organic semiconductors as functional building blocks for organic electronics due to their excellent chemical and physical properties.However,these indigo derivatives are difficult to access through chemical synthesis.In this study,we engineer cytochrome P450 BM3 from an NADPH-dependent monooxygenase to peroxygenases through directed evolution.A select number of P450 BM3 variants are used for the selective oxidation of indole derivatives to form different indigoid pigments with a spectrum of colors.Among the prepared indigoid organic photocatalysts,a majority of indigoids demonstrate a reduced band gap than indigo due to the increased light capture and improved charge separation,making them promising candidates for the development of new organic electronic devices.Thus,we present a useful enzymatic approach with broad substrate scope and cost-effectiveness by using low-cost H2O2 as a cofactor for the preparation of diversified indigoids,offering versatility in designing and manufacturing new dyestuff and electronic/sensor components. 展开更多
关键词 Cytochrome P450 enzymes P450 BM3 peroxygenase indigoids DYESTUFF Organic electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部