Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical I...Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.展开更多
Using monthly mean atmospheric re- analysis data and oceanic assimilation data product,the winter ocean-atmosphere interaction in middle and high latitude in Northwest Pacific was studied. Key regions were chosen to s...Using monthly mean atmospheric re- analysis data and oceanic assimilation data product,the winter ocean-atmosphere interaction in middle and high latitude in Northwest Pacific was studied. Key regions were chosen to study the variations of Aleutian Low,the 500hPa westerly,the meriodional sea surface temperature (SST) gradient with three indices defined as Aleutian Low index,zonal index and meridional SST gradient between Kuroshio- influenced region and Oyashio-influenced region. The results show that when there is a deeper Aleu- tian Low accompanied by a stronger northerly wind in the western part of the Aleutian Low,the subpolar gyre of North Pacific is strengthened,the SST in the Oyashio-influenced region is decreased and the me- ridional SST gradient between Kuroshio-influ- enced region and Oyashio-influenced region is increased,which,in turn,will enhance the westerly jet in the upper troposphere due to thermal-wind relation. The strengthened westerly jet makes a favorable condi- tion for the deeper Aleutian Low over North Pacific beneath the left part of the jet exit region. Conse- quently,a positive feedback forms there.展开更多
基金Supported by the National Key Program for Developing Basic Science of China(Nos.2012CB956002,2016YFA0600303)the National Natural Science Foundation of China(Nos.41675064,41621005,41330420,41275068)+1 种基金the Jiangsu Province Science Foundation(No.SBK2015020577)the Jiangsu Collaborative Innovation Center of Climate Change and Key Laboratory Project Foundation(No.KLME1501)
文摘Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.
基金the National Natural Science Foundation of China (Grant No. 40136010) National Basic Research Program of China (Grant No. 2005CB422301 ).
文摘Using monthly mean atmospheric re- analysis data and oceanic assimilation data product,the winter ocean-atmosphere interaction in middle and high latitude in Northwest Pacific was studied. Key regions were chosen to study the variations of Aleutian Low,the 500hPa westerly,the meriodional sea surface temperature (SST) gradient with three indices defined as Aleutian Low index,zonal index and meridional SST gradient between Kuroshio- influenced region and Oyashio-influenced region. The results show that when there is a deeper Aleu- tian Low accompanied by a stronger northerly wind in the western part of the Aleutian Low,the subpolar gyre of North Pacific is strengthened,the SST in the Oyashio-influenced region is decreased and the me- ridional SST gradient between Kuroshio-influ- enced region and Oyashio-influenced region is increased,which,in turn,will enhance the westerly jet in the upper troposphere due to thermal-wind relation. The strengthened westerly jet makes a favorable condi- tion for the deeper Aleutian Low over North Pacific beneath the left part of the jet exit region. Conse- quently,a positive feedback forms there.