Over 100 human thermal indices have been developed to predict the combined thermal impact on the body.In principle,these indices based on energy thermal budget equations should not only be the most complex but also be...Over 100 human thermal indices have been developed to predict the combined thermal impact on the body.In principle,these indices based on energy thermal budget equations should not only be the most complex but also be the most accurate.However,the simple indices based on algebraic or statistical models[e.g.,the wet-bulb globe temperature(WBGT)]continue to be the most popular.A new heat stress index,the enthalpy dry-bulb temperature(EnD)for indoor environments is developed and validated in this study.The EnD index is unique in that it uses the air specific enthalpy,not the wet-bulb temperature,to measure the latent heat transfer from the skin to the surrounding environment.Theoretically,the EnD index can be treated as the equivalent temperature based on the convective heat transfer coefficient h_(c).Comparison is made between the EnD index and the widely used WBGT index based on the experimental data taken from three independent studies available in the scientific literature.The results show that the EnD index can reduce the overestimation of the dry-bulb air temperature and thus reduce heat stress in most cases,especially for hot and humid environments.It can be concluded that the EnD index has the potential to replace the WBGT index as the standard heat stress index in the future.展开更多
The aim of this work was to analyze the effect of the magnetic field generated by the household appliances on the airborne microbial surrounding these equipment located on indoor environments with particular interest ...The aim of this work was to analyze the effect of the magnetic field generated by the household appliances on the airborne microbial surrounding these equipment located on indoor environments with particular interest in the environmental fungi.A simultaneous environmental study was carried out in locals of three different geographical places of Havana,Cuba,which have televisions,computers and an electric generator.The air samples were made by a sedimentation method using Malt Extract Agar.The concentration of total aerobic mesophilic as well as fungi and yeasts were determined in rainy and little rainy seasons by applying as factors:exposure time of dishes(5 to 60 min)and distance to the wall(0 and 1 m)at a height of 1 m above the floor.The predominant fungal genera were Cladosporium,Penicillium and Aspergillus.In the dishes that were placed at 0 and 0.5 m from the emitting sources were observed that some bacteria colonies formed inhibition halos,a great diversity of filamentous fungi and an increase in the mycelium pigmentation as well as the pigments excretion.In the rainy season,the highest amounts of fungi were obtained in all samples.In the little rain season the count of the Gram-negative bacilli increased three times the Gram-positive cocci.展开更多
In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants ...In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants in the typical classrooms are studied by 180 questionnaires.Then,based on the measured data,the temperature changes in the classrooms during a year are simulated by the DeST software.The results show that the indoor thermal environments in the northern classrooms on the first floor are better than those in other classrooms.And the measurement results accord with the simulation results.These results can be used as a reference for the study of the indoor thermal environments in other seasons.展开更多
High concentrations of environmental fungi in the archives repositories are dangerous for the documents preserved in those places and for the workers'health.The aims of this work were to evaluate the behavior of t...High concentrations of environmental fungi in the archives repositories are dangerous for the documents preserved in those places and for the workers'health.The aims of this work were to evaluate the behavior of the fungal concentration and diversity in the indoor air of repositories of 3 archives located in Havana,Cuba,and to demonstrate the potential risk that these taxa represent for the documentary heritage preserved in these institutions.The indoor and outdoor environments were sampled with a biocollector.From the I/O ratios,it was evident that two of the studied archives were not contaminated,while one of them did show contamination despite having temperature and relative humidity values very similar to the other two.Aspergillus,Penicillium and Cladosporium were the predominant genera in the indoor environments.New finds for archival environments were the genera Harposporium and Scolecobasidium.The principal species classified ecologically as abundant were C.cladosporioides and P.citrinum.They are known as opportunistic pathogenic fungi.All the analyzed taxa excreted acids,the most of them degraded cellulose,starch and gelatin while about 48%excreted different pigments.But 33%of them showed the highest biodeteriogenic potential,evidencing that they are the most dangerous for the documentary collections.展开更多
A case study is performed on the influence of the patio on the indoor environment of a traditional folk house group,named Zhangguying village in Hunan province,in the summer of 2007.Measurements include indoor and out...A case study is performed on the influence of the patio on the indoor environment of a traditional folk house group,named Zhangguying village in Hunan province,in the summer of 2007.Measurements include indoor and outdoor air temperature,indoor and outdoor illuminance,indoor and outdoor air speed,and carried out from August 5th to 10th.The results show that the patio,acting as a "buffer zone",can reduce the ambient impacts on the indoor thermal environment of rooms because the temperature of the patio is lower than that of the outdoor temperature but higher than that of the rooms.The patio can improve the indoor lighting environment because the illuminance of the patio is lower than that of outdoor and higher than that of the rooms.But the effect is too limited,because the illuminance of the rooms is lower than the national standards.This study shows that the shading design is the primary consideration in this kind of climate.The wind speed of the patio is stable and similar to that of the hall and the stack effect of the patio is not obvious.It shows that the patio is useful for natural ventilation,caused by wind pressure,in summer.展开更多
With the rapid development of economy, requirements on indoor environment design are getting higher and higher, but its prosperity brings ecological environment serious destruction and over consumption of resources. U...With the rapid development of economy, requirements on indoor environment design are getting higher and higher, but its prosperity brings ecological environment serious destruction and over consumption of resources. Under the global environment of the sustainable development, the principles of indoor environment design were analyzed ecologically and corresponding implementation methods were proposed to provide reference for energy-conservation and gas emission-reduction in the ecological system of indoor environment.展开更多
To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects wer...To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.展开更多
The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced ...The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.展开更多
With 1 185 pi eces of questionnaire, it is found that in China, people take fresh air, odor, e tc., as well as indoor air temperature, humidity, as the most important indoor a ir parameters. It is also found that ther...With 1 185 pi eces of questionnaire, it is found that in China, people take fresh air, odor, e tc., as well as indoor air temperature, humidity, as the most important indoor a ir parameters. It is also found that there is a significant sensitivity differen ce in indoor environment between southerners and northerners in China. People fr om different regions have different demands for their working and living environ ment. Therefore, as a good design of air conditioning system, it is strongly rec ommended that the different demands of people from different regions should be t aken into consideration.展开更多
With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation ...With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.展开更多
Microcontroller <span><span><span style="font-family:;" "="">is </span></span></span><span><span><span style="font-family:;" "...Microcontroller <span><span><span style="font-family:;" "="">is </span></span></span><span><span><span style="font-family:;" "="">widely</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">used in the intelligent life of modern society. Intelligent development based</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">on Microcontroller to solve the actual needs of people</span></span></span><span><span><span style="font-family:;" "="">’</span></span></span><span><span><span style="font-family:;" "="">s life, work, study and</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">other fields is the core of Microcontroller application.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Therefore, it is a task for researchers to understand the structure and performance of microcontroller, develop software, and be familiar with the method and process of intelligent development based on microcontroller. And with that in mind</span></span></span><span><span><span style="font-family:;" "="">, t</span></span></span><span><span><span style="font-family:;" "="">his paper designs and produces a physical hardware system for indoor environment detection based on STM32 microcontroller. The system can detect the light intensity, temperature and humidity, and CO gas concentration in the indoor environment;and the data is integrated and processed by the STM32 microcontroller to display the current parameter values of each quantity in the indoor environment on a 3.5-inch resistive screen;at the same time, the PC can also log in to the OneNET cloud platform through the web page, and display the light intensity, temperature and humidity, and CO gas concentration values in the indoor environment in real time in the device created by OneNET for real-time viewing. The system can also display the light intensity, temperature and humidity, and CO gas concentration values in the indoor environment in real time. The hardware system has been tested and tested to achieve its function.</span></span></span>展开更多
The rapid technological developments in the modern era have led to increased electrical equipment in our daily lives,work,and homes.From this standpoint,the main objective of this study is to evaluate the potential re...The rapid technological developments in the modern era have led to increased electrical equipment in our daily lives,work,and homes.From this standpoint,the main objective of this study is to evaluate the potential relationship between the intensity of electromagnetic radiation and the total energy of household appliances in the living environment within the building by measuring and analyzing the strength of the electric field and the entire electromagnetic radiation flux density of electrical devices operating at frequencies(5 Hz to 1 kHz).The living room was chosen as a center for measurement at 15 homes in three different environmental regions(urban,suburbs,and open areas).The three measurement methods are(Mode 1:people in a sitting position with electrical appliances on.Mode 2:People in a standing position with electrical appliances on.Mode 3:People are in the upright positionwhile turning off the electrical devices)in the living room.These measurement methods and their results reinforce the importance of this research.The results showed that the average electric field strengthmeasured inMode 2 ismuch greater than the two methods,and we also found less electromagnetic radiation in Mode 3 than in the two modes.All results remain within the recommended overall exposure developed by the International Committee for the Prevention of Non-Ionizing Radiation and the International Electrotechnical Commission.展开更多
The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobil...The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobile phone shielding device as the multiple antenna systems example, the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method. The effectivity of prediction method is verified by comparing the prediciton results with the measurment results. About 80% of the error can be controlled less than dB. The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.展开更多
There are a large number of wooden-plank wall dwellings, a kind of traditional house with regional characteristics, existing in Chongqing area. We chose a typical house in Chongqing as the subject and measured it duri...There are a large number of wooden-plank wall dwellings, a kind of traditional house with regional characteristics, existing in Chongqing area. We chose a typical house in Chongqing as the subject and measured it during summer to research the situation of the indoor thermal comfort of wooden-plank wall dwellings. Based on the particularity of local residents' living habit and the characteristics of the local buildings, we analyzed the data of the field measurement and evaluated the thermal environment with APMV. The results show that the indoor thermal comfort of wooden-plank wall dwellings in summer is improved mainly by natural ventilation.展开更多
The content of contribution is to analyse suggested renovation of school building in term of energy performance and indoor environment quality. There were three selected variants of possible reno ration of school buil...The content of contribution is to analyse suggested renovation of school building in term of energy performance and indoor environment quality. There were three selected variants of possible reno ration of school building. At first, it was installation of equipment for heat recovery into existing mechanical ventilation system. There were further evaluated possibilities how to use glass atrium or ground air-heat exchanger in mechanical ventilation system. These suggested variants were analysed in field of energy performance, namely in term of impacts on heat demand for space heating in order to keep required parameters of indoor environment quality according to standard STN EN 15251 (operative temperature, relative air humidity, air change rate). The analysis was elaborated by using energy simulation tool Design Builder in order to evaluate yearlong operation of buildings.展开更多
This exploratory research aims to evaluate indoor environmental quality in the classrooms of three school buildings in Southern Manitoba,Canada,and to evaluate the well-being of these schools’teachers as it pertains ...This exploratory research aims to evaluate indoor environmental quality in the classrooms of three school buildings in Southern Manitoba,Canada,and to evaluate the well-being of these schools’teachers as it pertains to their perception of their classrooms’indoor environment.The schools include a middle-aged,conventional school;a new,non-green school;and a new,green school certified using the Leadership in Energy and Environmental Design rating system.The methodology involved using a mobile instrument cart to conduct snapshot measurements of thermal comfort,indoor air quality,lighting and acoustics in classrooms and an occupant survey to evaluate teachers’long-term satisfaction with their classrooms’indoor environmental quality.The results showed that the new,green and new,non-green schools’classrooms performed better than the conventional,middle-aged school’s classrooms with respect to some aspects of thermal comfort and indoor air quality only.Teachers in the new,green school and in the new,non-green school were more satisfied than teachers in the conventional,middle-aged school with their classrooms’overall indoor environmental quality,lighting quality and indoor air quality.Surprisingly,the new,green and new-non green school classrooms’performance were very comparable with the new,green school’s classrooms performing statistically significantly better with respect to relative humidity.Similarly,none of the differences in teachers’satisfaction ratings between the new,green and new,non-green school were statistically significant.展开更多
With urbanization and the rapid development of social economy,China’s rail transit industry has developed rapidly in recent years.In order to alleviate the pressure of road network,subways provide convenience as they...With urbanization and the rapid development of social economy,China’s rail transit industry has developed rapidly in recent years.In order to alleviate the pressure of road network,subways provide convenience as they are fast and space-saving.Subway stations are major energy consumers of urban power grid due to their large traffic volume and long operation time.On the premise of ensuring operation safety,reducing the energy consumption of subway helps in energy conservation and emission reduction as proposed in the 13th Five-Year Plan.According to the statistics of the energy-saving evaluation report of rail transit engineering,the lighting system accounts for 20%-30%of the total power consumption of the subway station.Due to the single lighting control mode of the lighting system in the subway station,the actual station illumination cannot be reported and adjusted in time,resulting in the waste of lighting energy and high power consumption of the system.Through in-depth research on the intelligent lighting system of subway station,this paper improves the system control,and finally summarizes the optimization scheme of subway station lighting design which can effectively save the power consumption of lighting system.The main contents of this paper are as follows:The research results of this paper can provide effective measures for energy saving of electric lighting in subway stations and reduce electric energy consumption;on the other hand,as an integral part of building lighting energy-saving system,it also has certain guiding significance for the research of building lighting energy-saving.展开更多
The on-going COVID-19 pandemic has wrecked havoc in our society,with short and long-term consequences to people’s lives and livelihoods-over 651 million COVID-19 cases have been confirmed with the number of deaths ex...The on-going COVID-19 pandemic has wrecked havoc in our society,with short and long-term consequences to people’s lives and livelihoods-over 651 million COVID-19 cases have been confirmed with the number of deaths exceeding 6.66 million.As people stay indoors most of the time,how to operate the Heating,Ventilation and Air-Conditioning(HVAC)systems as well as building facilities to reduce airborne infections have become hot research topics.This paper presents a systematic review on COVID-19 related research in HVAC systems and the indoor environment.Firstly,it reviews the research on the improvement of ventilation,filtration,heating and air-conditioning systems since the onset of COVID-19.Secondly,various indoor environment improvement measures to minimize airborne spread,such as building envelope design,physical barriers and vent position arrangement,and the possible impact of COVID-19 on building energy consumption are examined.Thirdly,it provides comparisons on the building operation guidelines for preventing the spread of COVID-19 virus from different countries.Finally,recommendations for future studies are provided.展开更多
In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics ap...In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.展开更多
This project is based on measurements of the parameter relative humidity, RH (%), in two buildings: one with natural ventilation and one with mechanical ventilation. Both buildings are located in central Sweden, which...This project is based on measurements of the parameter relative humidity, RH (%), in two buildings: one with natural ventilation and one with mechanical ventilation. Both buildings are located in central Sweden, which constitutes a representative climate zone with respect to Swedish conditions. An important factor for the indoor environment, which affects human health and well-being, is the level of the relative humidity, RH (%). Research studies show that the healthiest level should be in the range of 40% - 60%. Surveys have revealed that about 70% of the employees at Swedish offices, schools and kindergartens experience that the air is too dry during the winter season. Previous studies show that the level of relative humidity in the indoor environment influences the prevalence of respiratory infections and allergies. The purpose of this study is to investigate how the relative humidity differ between the two buildings, and if this may be a cause of the health problems that users are affected by. During many years, users have complained about the environment in the building with mechanical ventilation and that they suffer from health problems. The method used in the study is air measurements of the two parameters, relative humidity and air temperature in the two buildings using data loggers. The indoor environment is affected by the outdoor climate and therefore instruments are placed outdoors to record seasonal variations. The measurements were carried out during the period October 2014 to September 2015 to include all of Sweden’s four seasons with completely different climatic conditions. The results of this study show that the relative humidity in the mechanically ventilated building is consistently significantly lower than in the building with natural ventilation whatever the time of year and temperature indoors. This study shows that mechanical ventilation in buildings affects the indoor environment negatively with respect to human health during most time of the year and this fact must be taken into consideration for the existing as well as the planning of new ventilation systems.展开更多
文摘Over 100 human thermal indices have been developed to predict the combined thermal impact on the body.In principle,these indices based on energy thermal budget equations should not only be the most complex but also be the most accurate.However,the simple indices based on algebraic or statistical models[e.g.,the wet-bulb globe temperature(WBGT)]continue to be the most popular.A new heat stress index,the enthalpy dry-bulb temperature(EnD)for indoor environments is developed and validated in this study.The EnD index is unique in that it uses the air specific enthalpy,not the wet-bulb temperature,to measure the latent heat transfer from the skin to the surrounding environment.Theoretically,the EnD index can be treated as the equivalent temperature based on the convective heat transfer coefficient h_(c).Comparison is made between the EnD index and the widely used WBGT index based on the experimental data taken from three independent studies available in the scientific literature.The results show that the EnD index can reduce the overestimation of the dry-bulb air temperature and thus reduce heat stress in most cases,especially for hot and humid environments.It can be concluded that the EnD index has the potential to replace the WBGT index as the standard heat stress index in the future.
基金the Ministry of Science,Technology and Environment,Cuba(PCA-2118025001)。
文摘The aim of this work was to analyze the effect of the magnetic field generated by the household appliances on the airborne microbial surrounding these equipment located on indoor environments with particular interest in the environmental fungi.A simultaneous environmental study was carried out in locals of three different geographical places of Havana,Cuba,which have televisions,computers and an electric generator.The air samples were made by a sedimentation method using Malt Extract Agar.The concentration of total aerobic mesophilic as well as fungi and yeasts were determined in rainy and little rainy seasons by applying as factors:exposure time of dishes(5 to 60 min)and distance to the wall(0 and 1 m)at a height of 1 m above the floor.The predominant fungal genera were Cladosporium,Penicillium and Aspergillus.In the dishes that were placed at 0 and 0.5 m from the emitting sources were observed that some bacteria colonies formed inhibition halos,a great diversity of filamentous fungi and an increase in the mycelium pigmentation as well as the pigments excretion.In the rainy season,the highest amounts of fungi were obtained in all samples.In the little rain season the count of the Gram-negative bacilli increased three times the Gram-positive cocci.
文摘In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants in the typical classrooms are studied by 180 questionnaires.Then,based on the measured data,the temperature changes in the classrooms during a year are simulated by the DeST software.The results show that the indoor thermal environments in the northern classrooms on the first floor are better than those in other classrooms.And the measurement results accord with the simulation results.These results can be used as a reference for the study of the indoor thermal environments in other seasons.
文摘High concentrations of environmental fungi in the archives repositories are dangerous for the documents preserved in those places and for the workers'health.The aims of this work were to evaluate the behavior of the fungal concentration and diversity in the indoor air of repositories of 3 archives located in Havana,Cuba,and to demonstrate the potential risk that these taxa represent for the documentary heritage preserved in these institutions.The indoor and outdoor environments were sampled with a biocollector.From the I/O ratios,it was evident that two of the studied archives were not contaminated,while one of them did show contamination despite having temperature and relative humidity values very similar to the other two.Aspergillus,Penicillium and Cladosporium were the predominant genera in the indoor environments.New finds for archival environments were the genera Harposporium and Scolecobasidium.The principal species classified ecologically as abundant were C.cladosporioides and P.citrinum.They are known as opportunistic pathogenic fungi.All the analyzed taxa excreted acids,the most of them degraded cellulose,starch and gelatin while about 48%excreted different pigments.But 33%of them showed the highest biodeteriogenic potential,evidencing that they are the most dangerous for the documentary collections.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAJ04A13,2006BAJ04B04,2006BAJ02A08,2006BAJ02A05,2006BAJ04A05)
文摘A case study is performed on the influence of the patio on the indoor environment of a traditional folk house group,named Zhangguying village in Hunan province,in the summer of 2007.Measurements include indoor and outdoor air temperature,indoor and outdoor illuminance,indoor and outdoor air speed,and carried out from August 5th to 10th.The results show that the patio,acting as a "buffer zone",can reduce the ambient impacts on the indoor thermal environment of rooms because the temperature of the patio is lower than that of the outdoor temperature but higher than that of the rooms.The patio can improve the indoor lighting environment because the illuminance of the patio is lower than that of outdoor and higher than that of the rooms.But the effect is too limited,because the illuminance of the rooms is lower than the national standards.This study shows that the shading design is the primary consideration in this kind of climate.The wind speed of the patio is stable and similar to that of the hall and the stack effect of the patio is not obvious.It shows that the patio is useful for natural ventilation,caused by wind pressure,in summer.
基金Supported by "Chen Guang"Project Launched by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09CGB09)~~
文摘With the rapid development of economy, requirements on indoor environment design are getting higher and higher, but its prosperity brings ecological environment serious destruction and over consumption of resources. Under the global environment of the sustainable development, the principles of indoor environment design were analyzed ecologically and corresponding implementation methods were proposed to provide reference for energy-conservation and gas emission-reduction in the ecological system of indoor environment.
基金Project(50838009) supported by the National Natural Science Foundation of China
文摘To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.
基金This project was supported by the key programof the Nationed Natural Science Foundation of China (60432040)
文摘The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.
文摘With 1 185 pi eces of questionnaire, it is found that in China, people take fresh air, odor, e tc., as well as indoor air temperature, humidity, as the most important indoor a ir parameters. It is also found that there is a significant sensitivity differen ce in indoor environment between southerners and northerners in China. People fr om different regions have different demands for their working and living environ ment. Therefore, as a good design of air conditioning system, it is strongly rec ommended that the different demands of people from different regions should be t aken into consideration.
基金National Key Research and Development of China(No.2019YFB1600700)Sichuan Science and Technology Planning Project(No.2021YFSY0003)。
文摘With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.
文摘Microcontroller <span><span><span style="font-family:;" "="">is </span></span></span><span><span><span style="font-family:;" "="">widely</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">used in the intelligent life of modern society. Intelligent development based</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">on Microcontroller to solve the actual needs of people</span></span></span><span><span><span style="font-family:;" "="">’</span></span></span><span><span><span style="font-family:;" "="">s life, work, study and</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">other fields is the core of Microcontroller application.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Therefore, it is a task for researchers to understand the structure and performance of microcontroller, develop software, and be familiar with the method and process of intelligent development based on microcontroller. And with that in mind</span></span></span><span><span><span style="font-family:;" "="">, t</span></span></span><span><span><span style="font-family:;" "="">his paper designs and produces a physical hardware system for indoor environment detection based on STM32 microcontroller. The system can detect the light intensity, temperature and humidity, and CO gas concentration in the indoor environment;and the data is integrated and processed by the STM32 microcontroller to display the current parameter values of each quantity in the indoor environment on a 3.5-inch resistive screen;at the same time, the PC can also log in to the OneNET cloud platform through the web page, and display the light intensity, temperature and humidity, and CO gas concentration values in the indoor environment in real time in the device created by OneNET for real-time viewing. The system can also display the light intensity, temperature and humidity, and CO gas concentration values in the indoor environment in real time. The hardware system has been tested and tested to achieve its function.</span></span></span>
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP.3/53/42),www.kku.edu.sa.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Path of Research Funding Program.
文摘The rapid technological developments in the modern era have led to increased electrical equipment in our daily lives,work,and homes.From this standpoint,the main objective of this study is to evaluate the potential relationship between the intensity of electromagnetic radiation and the total energy of household appliances in the living environment within the building by measuring and analyzing the strength of the electric field and the entire electromagnetic radiation flux density of electrical devices operating at frequencies(5 Hz to 1 kHz).The living room was chosen as a center for measurement at 15 homes in three different environmental regions(urban,suburbs,and open areas).The three measurement methods are(Mode 1:people in a sitting position with electrical appliances on.Mode 2:People in a standing position with electrical appliances on.Mode 3:People are in the upright positionwhile turning off the electrical devices)in the living room.These measurement methods and their results reinforce the importance of this research.The results showed that the average electric field strengthmeasured inMode 2 ismuch greater than the two methods,and we also found less electromagnetic radiation in Mode 3 than in the two modes.All results remain within the recommended overall exposure developed by the International Committee for the Prevention of Non-Ionizing Radiation and the International Electrotechnical Commission.
基金Supported by the State Environmental Protection Commonweal Industry Research Special of China (No.200909106)
文摘The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobile phone shielding device as the multiple antenna systems example, the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method. The effectivity of prediction method is verified by comparing the prediciton results with the measurment results. About 80% of the error can be controlled less than dB. The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.
基金Funded by National Key Technology Research and Development Program of the Ministry of Science and Technology of China During the“12th Five Year Plan”(2013BAJ11B04)Funding Project for fundamental and Frontier Science of the Chongqing Science&Technology Commission(cstc2014jcyj A90024)
文摘There are a large number of wooden-plank wall dwellings, a kind of traditional house with regional characteristics, existing in Chongqing area. We chose a typical house in Chongqing as the subject and measured it during summer to research the situation of the indoor thermal comfort of wooden-plank wall dwellings. Based on the particularity of local residents' living habit and the characteristics of the local buildings, we analyzed the data of the field measurement and evaluated the thermal environment with APMV. The results show that the indoor thermal comfort of wooden-plank wall dwellings in summer is improved mainly by natural ventilation.
文摘The content of contribution is to analyse suggested renovation of school building in term of energy performance and indoor environment quality. There were three selected variants of possible reno ration of school building. At first, it was installation of equipment for heat recovery into existing mechanical ventilation system. There were further evaluated possibilities how to use glass atrium or ground air-heat exchanger in mechanical ventilation system. These suggested variants were analysed in field of energy performance, namely in term of impacts on heat demand for space heating in order to keep required parameters of indoor environment quality according to standard STN EN 15251 (operative temperature, relative air humidity, air change rate). The analysis was elaborated by using energy simulation tool Design Builder in order to evaluate yearlong operation of buildings.
文摘This exploratory research aims to evaluate indoor environmental quality in the classrooms of three school buildings in Southern Manitoba,Canada,and to evaluate the well-being of these schools’teachers as it pertains to their perception of their classrooms’indoor environment.The schools include a middle-aged,conventional school;a new,non-green school;and a new,green school certified using the Leadership in Energy and Environmental Design rating system.The methodology involved using a mobile instrument cart to conduct snapshot measurements of thermal comfort,indoor air quality,lighting and acoustics in classrooms and an occupant survey to evaluate teachers’long-term satisfaction with their classrooms’indoor environmental quality.The results showed that the new,green and new,non-green schools’classrooms performed better than the conventional,middle-aged school’s classrooms with respect to some aspects of thermal comfort and indoor air quality only.Teachers in the new,green school and in the new,non-green school were more satisfied than teachers in the conventional,middle-aged school with their classrooms’overall indoor environmental quality,lighting quality and indoor air quality.Surprisingly,the new,green and new-non green school classrooms’performance were very comparable with the new,green school’s classrooms performing statistically significantly better with respect to relative humidity.Similarly,none of the differences in teachers’satisfaction ratings between the new,green and new,non-green school were statistically significant.
文摘With urbanization and the rapid development of social economy,China’s rail transit industry has developed rapidly in recent years.In order to alleviate the pressure of road network,subways provide convenience as they are fast and space-saving.Subway stations are major energy consumers of urban power grid due to their large traffic volume and long operation time.On the premise of ensuring operation safety,reducing the energy consumption of subway helps in energy conservation and emission reduction as proposed in the 13th Five-Year Plan.According to the statistics of the energy-saving evaluation report of rail transit engineering,the lighting system accounts for 20%-30%of the total power consumption of the subway station.Due to the single lighting control mode of the lighting system in the subway station,the actual station illumination cannot be reported and adjusted in time,resulting in the waste of lighting energy and high power consumption of the system.Through in-depth research on the intelligent lighting system of subway station,this paper improves the system control,and finally summarizes the optimization scheme of subway station lighting design which can effectively save the power consumption of lighting system.The main contents of this paper are as follows:The research results of this paper can provide effective measures for energy saving of electric lighting in subway stations and reduce electric energy consumption;on the other hand,as an integral part of building lighting energy-saving system,it also has certain guiding significance for the research of building lighting energy-saving.
文摘The on-going COVID-19 pandemic has wrecked havoc in our society,with short and long-term consequences to people’s lives and livelihoods-over 651 million COVID-19 cases have been confirmed with the number of deaths exceeding 6.66 million.As people stay indoors most of the time,how to operate the Heating,Ventilation and Air-Conditioning(HVAC)systems as well as building facilities to reduce airborne infections have become hot research topics.This paper presents a systematic review on COVID-19 related research in HVAC systems and the indoor environment.Firstly,it reviews the research on the improvement of ventilation,filtration,heating and air-conditioning systems since the onset of COVID-19.Secondly,various indoor environment improvement measures to minimize airborne spread,such as building envelope design,physical barriers and vent position arrangement,and the possible impact of COVID-19 on building energy consumption are examined.Thirdly,it provides comparisons on the building operation guidelines for preventing the spread of COVID-19 virus from different countries.Finally,recommendations for future studies are provided.
文摘In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.
文摘This project is based on measurements of the parameter relative humidity, RH (%), in two buildings: one with natural ventilation and one with mechanical ventilation. Both buildings are located in central Sweden, which constitutes a representative climate zone with respect to Swedish conditions. An important factor for the indoor environment, which affects human health and well-being, is the level of the relative humidity, RH (%). Research studies show that the healthiest level should be in the range of 40% - 60%. Surveys have revealed that about 70% of the employees at Swedish offices, schools and kindergartens experience that the air is too dry during the winter season. Previous studies show that the level of relative humidity in the indoor environment influences the prevalence of respiratory infections and allergies. The purpose of this study is to investigate how the relative humidity differ between the two buildings, and if this may be a cause of the health problems that users are affected by. During many years, users have complained about the environment in the building with mechanical ventilation and that they suffer from health problems. The method used in the study is air measurements of the two parameters, relative humidity and air temperature in the two buildings using data loggers. The indoor environment is affected by the outdoor climate and therefore instruments are placed outdoors to record seasonal variations. The measurements were carried out during the period October 2014 to September 2015 to include all of Sweden’s four seasons with completely different climatic conditions. The results of this study show that the relative humidity in the mechanically ventilated building is consistently significantly lower than in the building with natural ventilation whatever the time of year and temperature indoors. This study shows that mechanical ventilation in buildings affects the indoor environment negatively with respect to human health during most time of the year and this fact must be taken into consideration for the existing as well as the planning of new ventilation systems.