Subject code:E02 With the support by the National Natural Science Foundation of China,a collaborative study by the research group led by Prof.Zhou Jun(周军)from Wuhan National Laboratory for Optoelectronics,Huazhong U...Subject code:E02 With the support by the National Natural Science Foundation of China,a collaborative study by the research group led by Prof.Zhou Jun(周军)from Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Prof.Guo Wanlin(郭万林)from Nanjing University展开更多
Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is d...Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).展开更多
A model of magnetic stimulation is presented for analysis of the spatial distributions of the electric field induced by magnetic coils.Dimensionless analysis is introduced and makes the factors influencing the magnitu...A model of magnetic stimulation is presented for analysis of the spatial distributions of the electric field induced by magnetic coils.Dimensionless analysis is introduced and makes the factors influencing the magnitude of electric field into two parts:c (represents the stimulation conditions),and E 0 (reflects the geometry of coil).By 3 D simulation of the induced electric field of two kinds of coils,the effect of magnetic stimulation can be demonstrated and the factors influencing stimulating focality and depth are identified.The principles for determining the electric field magnitude,focality and magnetic stimulation depth when designing a reasonable coil and stimulator and achieving ideal stimulating effect are discussed.展开更多
The structural damage to vascular endothelial cell In a recent article in the journal Brain Injury, four potential hypotheses for delayed neurological disorders following lightning and electrical injury were suggested...The structural damage to vascular endothelial cell In a recent article in the journal Brain Injury, four potential hypotheses for delayed neurological disorders following lightning and electrical injury were suggested (Reisner, 2013). The phenomenon of delayed neurodegenerative syndromes following lighting and electrical injury has been known since the early 1930s (Critchley, 1934), but to the present day, the mechanisms involved have been poorly un- derstood. An initial and still plausible theory is that the electrical insult causes damage to the vascular structures feeding the spinal cord via damage to vascular endothelial cells (Farrell and Starr, 1968).展开更多
There is increasing public concern about biological interactions with and the potential health effects of low frequency electric and magnetic fields. Recently, the ICNIRP (International Commission on Non-Ionizing Rad...There is increasing public concern about biological interactions with and the potential health effects of low frequency electric and magnetic fields. Recently, the ICNIRP (International Commission on Non-Ionizing Radiation Protection) has published new exposure guidelines with regard to these fields. The aim of this paper is to demonstrate the calculation of the currents and electric fields induced in the human body by external electric fields at 60 Hz, using numerical human models of anatomically-realistic human bodies, and to compare those results with the basic restrictions proposed by the new guidelines. As a result, in the case that a human is exposed to an electric field of 1 kV/m at 60 Hz the short-circuit current of 18 μA flows though the ankles. Furthermore, the electric field of 40 mV/m in the nervous tissue of the adult model is induced by exposure to external electric fields at the reference level, which is enough smaller than the basic restrictions established in the ICNIRP guidelines for occupational exposure.展开更多
We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration.The electric and magne...We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration.The electric and magnetic fields we applied contain a magnetic and two electric fields.We find that when the atom is cooled down to the limit of the negligibly small kinetic energy,the atom behaves like an anyon because its angular momentum takes fractional values.The fractional part of the angular momentum is determined by both the magnetic and one of the electric fields.Roles electric and magnetic fields played are analyzed.展开更多
We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that...We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.展开更多
Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the mate...Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the materials after releasing the gate voltage VG at temperatures higher than the melting point of the selected ionic liquid. Here we show that a permanent superconductivity with transition temperature Tc of 24 and 15K is realized hi single crystals and polycrystalline samples of HfNCI and ZrNCI upon applying proper VG's at different temperatures. Reversible change between insulating and superconducting states can be obtained by applying positive and negative VG at low temperature such as 220K, whereas VG 's applied at 250K induce the irreversible superconducting transition. The upper critical field He2 of the superconducting states obtained at different gating temperatures shows similar temperature dependence. We propose a reasonable scenario that partial vacancy of Cl ions could be caused by applying proper VG's at slightly higher processing temperatures, which consequently results in a permanent electron doping in the system. Such a technique shows great potential to systematically tune the bulk electronic state in the similar two-dimensional systems.展开更多
Objetives The mechanism for changes in the electrophysiological properties of the atria during rapid pacing induced atrial fibrillation(AF) is not well understood.We aimed to investigate the contribution of intrinsic ...Objetives The mechanism for changes in the electrophysiological properties of the atria during rapid pacing induced atrial fibrillation(AF) is not well understood.We aimed to investigate the contribution of intrinsic cardiac autonomic nervous system(ICANS) in chronic atrial electrical remodeling and AF induced by rapid atrial pacing for 4 weeks. Methods Twelve adult mongrel dogs weighing 15 to 20 kg were assigned to two groups;group 1(experimental group,n= 7) and group 2(control group,n =5).All dogs were anesthetized with propofol and mechanically ventilated via endotracheal tubes.The chest was entered via bilateral mini-thoracotomy at the fourth intercostals space.Bipolar pacing electrode was sutured to the right atrial appendage.Four-electrode catheters(Biosense-Webster,Diamond Bar,CA) were secured to allow recording at the right and left atriaum.All tracings from the electrode catheters were amplified and digitally recorded using a computer-based Bard Laboratory System (CR Bard Inc,Billerica,MA).Electrograms were filtered at 50 to 500 Hz.Continuous rapid pacing(600 bpm, 2×threshold[TH]) was performed at the right atrial appendage. Ganglionated Plexi(GP) was localized by applying high frequency stimulation(HFS;20 Hz,0.1ms duration, 0.5 to 4.5 V)with a bipolar stimulation-ablation probe electrode (AtriCure,West Chester,OH).Group1 underwent ablation of bilateral GP and ligament of Marshall followed by 4-week pacing.Group 2 underwent sham operaton without ablation of GP and ligament of Marshall followed by 4-week pacing.The effective refractory period(ERP) and window of vulnerability(WOV) were measured at 2×TH before(baseline) and every week after GP ablation.WOV was defined as the difference between the longest and the shortest coupling interval of the premature stimulus that induced AF.GP consist of the anterior right ganglionated plexi(ARGP) located in the fat pad at the right superior pulmonary vein(RSPV)-atrial junction;the inferior right ganglionated plexi(IRGP) located at the inferior vena cava/right atrial junction;the superior left ganglionated plexi(SLGP) at the left superior pulmonary vein(LSPV) /left atrial junction and the inferior left ganglionated plexi(ILGP) at the left inferior pulmonary vein (LIPV)/left atrial junction.Results Immediately after ablation, the ERP in Group 1 became markedly longer and started to shorten gradually during the first 2 weeks,then stabilized at the 4th week.Compared to Group2,the ERP of Group1 was significantly longer in the first 3 weeks(P【 0.05),but no obvious difference at the 4th week in either the right or left atrium(P】0.05).In Group 1,AF could not be induced(WOV=0)in the first 3 weeks after ablation, and at the 4th week,AF was induced in 2 of 7 dogs.In Group2,WOV progressively widened during the 4-week period. AF could not be induced in 5 of 7 dogs in Group 1 and 1 of 5 dogs in Group 2 during the 4-week pacing period. Conclusions The intrinsic cardiac autonomic nervous system (ICANS) plays an important role in the early stage of atrial electrical remodeling induced by rapid atrial pacing.On the other hand,with time passing by,its effect on the formation of AF decreases gradually,which suggests that ICANS may account for a non-dominant factor in the late stage of the rapid pacing-induced chronic atrial fibrillation.展开更多
Leakage currents accelerate surface degradation of metal contacts via small scale arcing across lubricating films,but recent observations suggest that metallic nanoparticle additives in lubricants may be useful to imp...Leakage currents accelerate surface degradation of metal contacts via small scale arcing across lubricating films,but recent observations suggest that metallic nanoparticle additives in lubricants may be useful to improve contact performance.These findings prompted a study that examined electrically induced surface pitting of steel contacts in the presence of several lubricating greases including some containing nanometer-sized colloidal silver(Ag)particles.Reciprocating rolling sphere-on-disk experiments were conducted under electro-tribological loads employing polyurea greases derived from mineral and synthetic base oils with and without additives.Friction forces and electrical resistance were monitored continuously during the tests;surface changes were characterized by means of optical spectroscopy,stylus profilometry,and scanning electron microscopy(SEM)including compositional analysis using energy dispersive spectroscopy(EDS).The observations demonstrate that surface pitting induced by arcing occurs mainly at the points were the rolling motion changes direction and that eroded metal is deposited along the wear grove.Micron-sized pits are formed which contain carbon and oxygen indicating that arcing causes decomposition of the hydrocarbon lubricants.Numerous findings indicate a significant inhibition of pitting is induced by the Ag nanoparticles;some greases containing other additives exhibit a similar,although less pronounced,effect.展开更多
This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external el...This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal).By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate,it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one).The theoretical results obtained are in good agreement with recent relevant experimental results.展开更多
We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stab...We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.展开更多
A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-depende...A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-dependent effective magnetic fields felt by charge carriers due to the spin-orbit interaction are in-plane orientated in such systems, both in-plane polarized and normal polarized nonequilibrium spin polarization densities could be electrically induced by the kinetic magnetoelectric effect, and the induced nonequilibrium spin polarizations exhibit some interesting characteristics. The characteristics we found indicate that there may be some possible relation between this effect and some recent experimental findings.展开更多
The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electr...The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain a substantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to soin-orbit dependent impurity scatterings.展开更多
With the support of the National Natural Science Foundation of China,two original studies by the research group led by Prof.Gu Lin(谷林)and Prof.Zhang Qinghua(张庆华)from the Institute of Physics,Chinese Academy of Sc...With the support of the National Natural Science Foundation of China,two original studies by the research group led by Prof.Gu Lin(谷林)and Prof.Zhang Qinghua(张庆华)from the Institute of Physics,Chinese Academy of Sciences demonstrate the in-situ atomic-scale electrically induced展开更多
Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal...Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal conductivity and relies heavily on mechanical pump. As an alternative, the room temperature liquid metal was increasingly emerging as an important coolant to realize much stronger enhanced heat transfer. However, its thermal capacity is somewhat lower than that of water, which may restrict the overall cooling performance. In addition, the high cost by taking too much amount of liquid metal into the device also turns out to be a big concern for practical purpose. Here, through combining the individual merits from both the liquid metal with high conductivity and water with large heat capacity, we proposed and demonstrated a new conceptual cooling de- vice that integrated hybrid coolants, radiator and annular channel together for chip thermal management. Particularly, the elec- trically induced actuation effect of liquid metal was introduced as the only flow driving strategy, which significantly simplified the whole system design. This enables the liquid metal sphere and its surrounding aqueous solution to be quickly accelerated to a large speed under only a very low electric voltage. Further experiments demonstrated that the cooling device could effective- ly maintain the temperature of a hotpot (3.15 W/cm2) below 55℃ with an extremely small power consumption rate (0.8 W). Sev- eral situations to simulate the practical working of the device were experimentally explored and a theoretical thermal resistance model was established to evaluate its heat transfer performance. The present work suggests an important way to make highly compact chip cooling device, which can be flexibly extended into a wide variety of engineering areas.展开更多
Nd1-xSrxMnO3 (x : 0.3, 0.5) ceramics containing a secondary phase are synthesized by high-energy ball milling and post heat-treatment method. The 4-wire and 2-wire measuring modes are used to investigate the transp...Nd1-xSrxMnO3 (x : 0.3, 0.5) ceramics containing a secondary phase are synthesized by high-energy ball milling and post heat-treatment method. The 4-wire and 2-wire measuring modes are used to investigate the transport character of the grain/phase boundary (inner interface) and electrode-bulk interface (outer interface), respectively, and the results indicate that there is a similar nonlinear I-V behaviour for both of the inner and outer interfaces, however, the electric pulse induced resistance change (EPIR) effect can only be observed at the outer interface.展开更多
文摘Subject code:E02 With the support by the National Natural Science Foundation of China,a collaborative study by the research group led by Prof.Zhou Jun(周军)from Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Prof.Guo Wanlin(郭万林)from Nanjing University
基金National Key Research and Development Program of China(No.2021YFE0114700)National Natural Science Foundation of China(Nos.52130701 and 51977096)。
文摘Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).
文摘A model of magnetic stimulation is presented for analysis of the spatial distributions of the electric field induced by magnetic coils.Dimensionless analysis is introduced and makes the factors influencing the magnitude of electric field into two parts:c (represents the stimulation conditions),and E 0 (reflects the geometry of coil).By 3 D simulation of the induced electric field of two kinds of coils,the effect of magnetic stimulation can be demonstrated and the factors influencing stimulating focality and depth are identified.The principles for determining the electric field magnitude,focality and magnetic stimulation depth when designing a reasonable coil and stimulator and achieving ideal stimulating effect are discussed.
文摘The structural damage to vascular endothelial cell In a recent article in the journal Brain Injury, four potential hypotheses for delayed neurological disorders following lightning and electrical injury were suggested (Reisner, 2013). The phenomenon of delayed neurodegenerative syndromes following lighting and electrical injury has been known since the early 1930s (Critchley, 1934), but to the present day, the mechanisms involved have been poorly un- derstood. An initial and still plausible theory is that the electrical insult causes damage to the vascular structures feeding the spinal cord via damage to vascular endothelial cells (Farrell and Starr, 1968).
文摘There is increasing public concern about biological interactions with and the potential health effects of low frequency electric and magnetic fields. Recently, the ICNIRP (International Commission on Non-Ionizing Radiation Protection) has published new exposure guidelines with regard to these fields. The aim of this paper is to demonstrate the calculation of the currents and electric fields induced in the human body by external electric fields at 60 Hz, using numerical human models of anatomically-realistic human bodies, and to compare those results with the basic restrictions proposed by the new guidelines. As a result, in the case that a human is exposed to an electric field of 1 kV/m at 60 Hz the short-circuit current of 18 μA flows though the ankles. Furthermore, the electric field of 40 mV/m in the nervous tissue of the adult model is induced by exposure to external electric fields at the reference level, which is enough smaller than the basic restrictions established in the ICNIRP guidelines for occupational exposure.
基金the National Natural Science Foundation of China(Grant No.11465006),20200981-SIP-IPN,and the CONACyT(Grant No.288856-CB-2016).
文摘We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration.The electric and magnetic fields we applied contain a magnetic and two electric fields.We find that when the atom is cooled down to the limit of the negligibly small kinetic energy,the atom behaves like an anyon because its angular momentum takes fractional values.The fractional part of the angular momentum is determined by both the magnetic and one of the electric fields.Roles electric and magnetic fields played are analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874049)the State Key Program for Basic Research of China (Grant No. 2007CB925204)the Natural Science Foundation of Guangdong Province of China (GrantNo. 07005834)
文摘We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.
基金Supported by the National Natural Science Foundation of China under Grant No 11704403the National Key Research Program of China under Grant No 2016YFA0401000 and 2016YFA0300604the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020100
文摘Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the materials after releasing the gate voltage VG at temperatures higher than the melting point of the selected ionic liquid. Here we show that a permanent superconductivity with transition temperature Tc of 24 and 15K is realized hi single crystals and polycrystalline samples of HfNCI and ZrNCI upon applying proper VG's at different temperatures. Reversible change between insulating and superconducting states can be obtained by applying positive and negative VG at low temperature such as 220K, whereas VG 's applied at 250K induce the irreversible superconducting transition. The upper critical field He2 of the superconducting states obtained at different gating temperatures shows similar temperature dependence. We propose a reasonable scenario that partial vacancy of Cl ions could be caused by applying proper VG's at slightly higher processing temperatures, which consequently results in a permanent electron doping in the system. Such a technique shows great potential to systematically tune the bulk electronic state in the similar two-dimensional systems.
文摘Objetives The mechanism for changes in the electrophysiological properties of the atria during rapid pacing induced atrial fibrillation(AF) is not well understood.We aimed to investigate the contribution of intrinsic cardiac autonomic nervous system(ICANS) in chronic atrial electrical remodeling and AF induced by rapid atrial pacing for 4 weeks. Methods Twelve adult mongrel dogs weighing 15 to 20 kg were assigned to two groups;group 1(experimental group,n= 7) and group 2(control group,n =5).All dogs were anesthetized with propofol and mechanically ventilated via endotracheal tubes.The chest was entered via bilateral mini-thoracotomy at the fourth intercostals space.Bipolar pacing electrode was sutured to the right atrial appendage.Four-electrode catheters(Biosense-Webster,Diamond Bar,CA) were secured to allow recording at the right and left atriaum.All tracings from the electrode catheters were amplified and digitally recorded using a computer-based Bard Laboratory System (CR Bard Inc,Billerica,MA).Electrograms were filtered at 50 to 500 Hz.Continuous rapid pacing(600 bpm, 2×threshold[TH]) was performed at the right atrial appendage. Ganglionated Plexi(GP) was localized by applying high frequency stimulation(HFS;20 Hz,0.1ms duration, 0.5 to 4.5 V)with a bipolar stimulation-ablation probe electrode (AtriCure,West Chester,OH).Group1 underwent ablation of bilateral GP and ligament of Marshall followed by 4-week pacing.Group 2 underwent sham operaton without ablation of GP and ligament of Marshall followed by 4-week pacing.The effective refractory period(ERP) and window of vulnerability(WOV) were measured at 2×TH before(baseline) and every week after GP ablation.WOV was defined as the difference between the longest and the shortest coupling interval of the premature stimulus that induced AF.GP consist of the anterior right ganglionated plexi(ARGP) located in the fat pad at the right superior pulmonary vein(RSPV)-atrial junction;the inferior right ganglionated plexi(IRGP) located at the inferior vena cava/right atrial junction;the superior left ganglionated plexi(SLGP) at the left superior pulmonary vein(LSPV) /left atrial junction and the inferior left ganglionated plexi(ILGP) at the left inferior pulmonary vein (LIPV)/left atrial junction.Results Immediately after ablation, the ERP in Group 1 became markedly longer and started to shorten gradually during the first 2 weeks,then stabilized at the 4th week.Compared to Group2,the ERP of Group1 was significantly longer in the first 3 weeks(P【 0.05),but no obvious difference at the 4th week in either the right or left atrium(P】0.05).In Group 1,AF could not be induced(WOV=0)in the first 3 weeks after ablation, and at the 4th week,AF was induced in 2 of 7 dogs.In Group2,WOV progressively widened during the 4-week period. AF could not be induced in 5 of 7 dogs in Group 1 and 1 of 5 dogs in Group 2 during the 4-week pacing period. Conclusions The intrinsic cardiac autonomic nervous system (ICANS) plays an important role in the early stage of atrial electrical remodeling induced by rapid atrial pacing.On the other hand,with time passing by,its effect on the formation of AF decreases gradually,which suggests that ICANS may account for a non-dominant factor in the late stage of the rapid pacing-induced chronic atrial fibrillation.
文摘Leakage currents accelerate surface degradation of metal contacts via small scale arcing across lubricating films,but recent observations suggest that metallic nanoparticle additives in lubricants may be useful to improve contact performance.These findings prompted a study that examined electrically induced surface pitting of steel contacts in the presence of several lubricating greases including some containing nanometer-sized colloidal silver(Ag)particles.Reciprocating rolling sphere-on-disk experiments were conducted under electro-tribological loads employing polyurea greases derived from mineral and synthetic base oils with and without additives.Friction forces and electrical resistance were monitored continuously during the tests;surface changes were characterized by means of optical spectroscopy,stylus profilometry,and scanning electron microscopy(SEM)including compositional analysis using energy dispersive spectroscopy(EDS).The observations demonstrate that surface pitting induced by arcing occurs mainly at the points were the rolling motion changes direction and that eroded metal is deposited along the wear grove.Micron-sized pits are formed which contain carbon and oxygen indicating that arcing causes decomposition of the hydrocarbon lubricants.Numerous findings indicate a significant inhibition of pitting is induced by the Ag nanoparticles;some greases containing other additives exhibit a similar,although less pronounced,effect.
基金Project supported by the National Natural Science Foundation of China (Grant No 10874049)the State Key Program for Basic Research of China (Grant No 2007CB925204)the Natural Science Foundation of Guangdong Province of China (Grant No07005834)
文摘This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal).By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate,it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one).The theoretical results obtained are in good agreement with recent relevant experimental results.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB925002)the National High Technology Research and Development Program of China (Grant No. 2008AA031401)and Chinese Academy of Sciences
文摘We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.
基金supported by the National Natural Science Foundation of China (Grant No 10874049)the State Key Program for Basic Research of China (Grant No 2007CB925204)the Natural Science Foundation of Guangdong Province of China (Grant No 07005834)
文摘A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-dependent effective magnetic fields felt by charge carriers due to the spin-orbit interaction are in-plane orientated in such systems, both in-plane polarized and normal polarized nonequilibrium spin polarization densities could be electrically induced by the kinetic magnetoelectric effect, and the induced nonequilibrium spin polarizations exhibit some interesting characteristics. The characteristics we found indicate that there may be some possible relation between this effect and some recent experimental findings.
基金Supported by the National Natural Science Foundation of China under Grant No.10874049the State Key Program for Basic Research of China under Grant No.2007CB925204the Natural Science Foundation of Guangdong Province under Grant No.07005834
文摘The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain a substantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to soin-orbit dependent impurity scatterings.
文摘With the support of the National Natural Science Foundation of China,two original studies by the research group led by Prof.Gu Lin(谷林)and Prof.Zhang Qinghua(张庆华)from the Institute of Physics,Chinese Academy of Sciences demonstrate the in-situ atomic-scale electrically induced
基金supported by the Research Funding from the Technical Institute of Physics and ChemistryChinese Academy of Sciences
文摘Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal conductivity and relies heavily on mechanical pump. As an alternative, the room temperature liquid metal was increasingly emerging as an important coolant to realize much stronger enhanced heat transfer. However, its thermal capacity is somewhat lower than that of water, which may restrict the overall cooling performance. In addition, the high cost by taking too much amount of liquid metal into the device also turns out to be a big concern for practical purpose. Here, through combining the individual merits from both the liquid metal with high conductivity and water with large heat capacity, we proposed and demonstrated a new conceptual cooling de- vice that integrated hybrid coolants, radiator and annular channel together for chip thermal management. Particularly, the elec- trically induced actuation effect of liquid metal was introduced as the only flow driving strategy, which significantly simplified the whole system design. This enables the liquid metal sphere and its surrounding aqueous solution to be quickly accelerated to a large speed under only a very low electric voltage. Further experiments demonstrated that the cooling device could effective- ly maintain the temperature of a hotpot (3.15 W/cm2) below 55℃ with an extremely small power consumption rate (0.8 W). Sev- eral situations to simulate the practical working of the device were experimentally explored and a theoretical thermal resistance model was established to evaluate its heat transfer performance. The present work suggests an important way to make highly compact chip cooling device, which can be flexibly extended into a wide variety of engineering areas.
基金the Project of Hubei Polytechnic University (No.12xjz01R)The Natural Science Foundation of Hubei Province(No.2012FFB01001)the Program of Ministry of Education of China(for New Century Excellent Talents in University, No.NCET-08-0674)for their financial supports
文摘Nd1-xSrxMnO3 (x : 0.3, 0.5) ceramics containing a secondary phase are synthesized by high-energy ball milling and post heat-treatment method. The 4-wire and 2-wire measuring modes are used to investigate the transport character of the grain/phase boundary (inner interface) and electrode-bulk interface (outer interface), respectively, and the results indicate that there is a similar nonlinear I-V behaviour for both of the inner and outer interfaces, however, the electric pulse induced resistance change (EPIR) effect can only be observed at the outer interface.