The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramib...The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramibalis c.v and Populus deltoids) suffocated by Methyl jasmonate (MeJA) and Methyl salicylate (MeSA) were monitored for analyzing their functions in interplant communications by using high-pressure liquid chromatography (HPLC).The results showed that the contents of phenolic acids had obviously difference in leaves exposed to either MeSA or MeJA.When P.deltoides leaves exposed to MeJA or MeSA, the level of gallic acid, coumaric acid, caffeic acid, ferulic acid and benzoic acid was increased, gallic acid in leaves treated with MeJA comes to a peak at 24 h while to a peak at 12-d having leaves treated with MeSA.When P.Simonii ×P.Pyramibalis c.v leaves were exposed to MeJA or MeSA, the level of gallic acid, pyrocatechol and ferulic acid was increased; The catechinic acid and benzoic acid had a little drop; The caffeic acid and coumaric acid were undetected in both suffocated and control leaves.This changed pattern indicated that MeJA and MeSA can act as airborne signals to induce defense response of plants.展开更多
[Objective] This study was to understand the effects of β-Amino butyric acid(abbreviated as BABA) induced rice blast resistance on reactive oxygen metabolism. [Method] Using the cultivar Chaochan 2 that is highly sus...[Objective] This study was to understand the effects of β-Amino butyric acid(abbreviated as BABA) induced rice blast resistance on reactive oxygen metabolism. [Method] Using the cultivar Chaochan 2 that is highly susceptible to disease as experimental material, the changes of catalase(CAT), and superoxide dismutase(SOD) and MDA activities in rice treated by BABA were investigated. [Result] In rice plants treated by BABA, the activities of CAT and SOD increased, meanwhile the MDA content also rose to some extent, resulting in the disease resistance to rice blast. [Conclusion] By influencing reactive oxygen metabolism, BABA endows rice plants with resistance to rice blast. BABA is safe to environment and has highly resistance-inducing capacity, it could be generalized in production.展开更多
[Objective] The aim was to explore the effect of tomato's resistance to Botrytis cinerea induced by exogenous Chitosan.[Method] The leaf spraying method was used to determine the induced resistance effect of Chitosan...[Objective] The aim was to explore the effect of tomato's resistance to Botrytis cinerea induced by exogenous Chitosan.[Method] The leaf spraying method was used to determine the induced resistance effect of Chitosan to tomato B.cinerea and the chlorophyll content,soluble protein,soluble sugar,proline influence,the activities of peroxidase(POD),malondialdehyde(MDA)and the Proline content in leaves of tomato.[Result] The induced resistance of Chitosan reached 58.26% at 14th d after treatment;Compared with the B.cinerea stress group,the chlorophyll content in leaves of tomato seedlings of B.cinerea stress + Chitosan group had increased by 34.63%,while that of soluble protein content,soluble sugar content,Pro content and POD activity was 5.30%,10.83%,16.21% and 16.88%,respectively(except for the MDA content,which was decreased by 16.54%).[Conclusion] Exogenous Chitosan could improve photosynthetic efficiency and protect enzymes activity to improve the resistance of tomato seedlings to B.cinerea.展开更多
[ Objectlve] The paper was to compare the induced resistance of several chemicals on cucumber against Pseudoperonospora cubensis [ Method ] When the cucumber seedlings grew to 4-leaf stage, the second true leaf was tr...[ Objectlve] The paper was to compare the induced resistance of several chemicals on cucumber against Pseudoperonospora cubensis [ Method ] When the cucumber seedlings grew to 4-leaf stage, the second true leaf was treated with salicylic acid, oxalate, chitosan, calcium nitrate and Na2HPO4, the activity of protective enzymes in the third leaf was determined after 7 d. At the same time, inoculation test was also conducted after induced treatment, and the disease condi- tion was coumed. [ Result ] These chemical treatments promoted protective enzyme activities (POD, SOD, PAL, PPO) in different degree, improved the ultra-weak luminescence, and reduced the disease index of cucumber leaves. [ Conclusion] Five chemical treatments expressed good effects on induced resistance. Among the treatments, oxalate had the best induced effect, followed by salicylic acid, chitosan, Na2 HPO4 and calcium nitrate.展开更多
Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people a...Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people and play an important role in the social fabric of many rural communities. Plantain banana cultivation encounters major problem of seedlings unavailability that are essential for the creation of new plantations, as well as parasitic constraints. Mycosphaerella fijiensis is the main pathogen attack constraints of banana plant responsible of black Sigatoka disease, and viruses, which can severely reduce the photosynthetic leaf area, leading to banana production losses of more than 80% in plantations with soil fertility problems. The repeated use of synthetic input is the origin of contamination to the environment, different pollution sources of plants and human health, as well as resistance to some strains of pathogens and plant fertilization problems over time. Recent works carried out in nursery have shown that vivoplants of plantains treated with biostimulants based on natural products notably Tithonia diversifolia biopromote good growth and less susceptibility to M. fijiensis. Indeed, an increase in agromorphological characteristics, good accumulation of growth and defense biomarkers was also observed. In this context, Tithonia diversifolia is shown to be involved in the stimulatory effect mechanism of growth promotion and defensive reaction of plantain vivoplants against various pathogens and it is suggested to be acting as a vital stimulator. This article reviews the current state of knowledge on plantain banana cultivation constraints and on the potential of Tithonia diversifolia in relation with its different stimulatory effects on plantain vivoplants.展开更多
Resistance to maize southern leaf spot disease was induced by the low-concentration filtrate of Bipolaris maydis race T cultivation in an experiment. The nuclear neterogeny corn C103 was used as the test material. The...Resistance to maize southern leaf spot disease was induced by the low-concentration filtrate of Bipolaris maydis race T cultivation in an experiment. The nuclear neterogeny corn C103 was used as the test material. The lesion area on the leaves was significant difference by connalysis. The lesion areas on pretreated leaves were (0.3±0.05)- (0.9±0.5) mm^2, but those on the control were (23.1±8.7) mm^2. At the same time, the changes in peroxidase, phenylalanine, ammonialyase, and malondialdehvde activities were determined. During 0-96 h of inspection, phenylalanine and ammonialyase (PAL) activities increased by 64.2%, peroxidase (POD) activities increased by 41.2%, but the malondialdenvde (MDA) content decreased by 29.7% compared with the control. It seems that the low-concentration filtrate of Bipolaris maydis race T cultivation itself can be used as an elicitor to enhance the induced resistance.展开更多
6a-Hydroxylup-20(29)-en-3-on-28-oic acid(1),a natural triterpenoid,was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes,and restoring...6a-Hydroxylup-20(29)-en-3-on-28-oic acid(1),a natural triterpenoid,was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes,and restoring glucose consuming ability in dexamethasone(DXM)-induced insulin resistant 3T3-L1 adipocytes.Compound 1 was also found to ameliorate DXM-induced adipocyte dysfunction in lipolysis and adipokine secretion.Mechanistic studies revealed that 1 inhibited adipocyte differentiation in 3T3-L1 preadipocytes via down-regulating hormone-stimulated gene transcription of peroxisome proliferator-activated receptor c and CCAAT-enhancer-binding protein alpha which are key factors in lipogenesis,and restored DXM-impaired glucose consuming ability in differentiated 3T3-L1 adipocytes via repairing insulin signaling pathway and activating down-stream signaling transduction by phosphorylation of signaling molecules PI3K/p85,Akt2 and AS160,thus leading to increased translocation of glucose transporter type 4 and transportation of glucose.展开更多
[ Objective ] The paper was to explore the induced resistance of tomato against gray mold (Botrytis cinerea) by salicylic acid. [ Method ] SA was used as an inducer to treat tomato seedlings, the effects of SA on my...[ Objective ] The paper was to explore the induced resistance of tomato against gray mold (Botrytis cinerea) by salicylic acid. [ Method ] SA was used as an inducer to treat tomato seedlings, the effects of SA on mycelial diameter and spore germination of B. cinerea were studied, and the changes of 4 defense enzyme activities containing catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL), as well as malondialdehyde (MDA) content during the production process of induced resistance were also measured. [ Result] SA had no inhibitory effect against spore germination and myce- lial growth of B. cinerea within the concentration range, and the relative induced effect had different degrees of improvement after treatment. The induced effect was the best as B. cinerea was challenged to inoculate at the third day after using 150 mg/L SA in tomato plants, and the duration of resistance was 10 -15 d. After treated by SA, CAT, POD, PPO and PAL first increased and then decreased in systemic induced resistance against B. cinerea, which were significantly higher than control. Meanwhile, MDA content showed ascendant trend in wavy line form. [ Conclusion ] The use of SA within a certain concentration range is safe; CAT, POD, PPO and PAL activities have positive correlation with induced resistance against B. cinerea, the increase of MDA content also has close relationship with the imvrovement of disease resistance.展开更多
To explore rice blast resistance induced by Ag-antibiotic 702, different concentrations of Ag-antibiotic 702 were spayed on susceptible variety Luliangyou 996 at three-leaf and one-heart stage, to screen the optimal c...To explore rice blast resistance induced by Ag-antibiotic 702, different concentrations of Ag-antibiotic 702 were spayed on susceptible variety Luliangyou 996 at three-leaf and one-heart stage, to screen the optimal concentration for inducing rice blast resistance. Ag-antibiotic 702 was sprayed at seven different growth stages of rice, to determine the best growth stage for induced blast resistance and duration of blast resistance. Various treatments were inoculated with spore fluid of Magnaporthe grisea at 4 d post spraying, and disease index and incidence rate as well as induction effect of different treatments were investigated after 7 d. The results showed that six concentrations of Ag-antibiotic 702 could induce rice resistance against blast, and 15 μg/mL led to the highest blast resistance; spraying 15 μg/mL Ag-antibiotic 702 at seven different growth stages could induce rice resistance against blast ; the three-leaf and one-heart stage was the best growth stage for inducing rice blast resistance, and the relative induction effect reached 56.56% ; rice blast resistance was the highest at 48 -96 h post spraying, and duration of induced rice blast resistance exceeded 144 h. The study will provide useful experimental data for further development of Ag-antibiotic 702 and application of pre- vention and control methods against rice blast.展开更多
Rice sheath blight is one of the main diseases in rice production in China,which can make rice unable to absorb and utilize nutrients,and has a serious impact on rice yield and quality.In this study,exogenous ethylene...Rice sheath blight is one of the main diseases in rice production in China,which can make rice unable to absorb and utilize nutrients,and has a serious impact on rice yield and quality.In this study,exogenous ethylene was used to induce rice resistance against rice sheath blight,aiming at exploring a new environment-friendly control method of rice sheath blight.The results showed that within a range of certain concentrations,ethylene had no significant effects on mycelium growth,but it could induce resistance to sheath blight in rice.The optimum concentration was 0.2 mmol•L^(-1) and the relative control was 86.17%.It was found that ethylene could effectively increase the activities of peroxidase(POD),phenylalanine ammonia-lyase(PAL),β-1,3-glucanase and reduce the contents of malondialdehyde(MDA),which could enhance the resistance of rice against Rhizoctonia solani.In addition,qRT-PCR detected the expressions of rice defense genes,which indicated that the expressions of the POX,PAL and OsPR1b genes were up-regulated.展开更多
The aim of the paper was to study the metabolite profile and morphological characteristics of sugar beet regenerants exposed to aluminium ions (Al^3+). The regenerants were selected basing on selective media with s...The aim of the paper was to study the metabolite profile and morphological characteristics of sugar beet regenerants exposed to aluminium ions (Al^3+). The regenerants were selected basing on selective media with sublethal acidity (pH 3.5). The thrice-repeated passaging of sugar beet microclones of two genotypes in low pH medium causes certain alterations in the cellular metabolism. The paper demonstrated that peroxidase (POD) and isocitrate lyase (ICL) activity increased in both varieties. At the same time, NADH-dehydrogenase (NADH-DH) activity decreased in hybrid plants. Glucose-6-phosphate-dehydrogenase (gl-6-ph-dh) activity increased in mail sterile (MS) hybrid plants, but reduced in Ramonskaya fertile (RF) hybrid plants. Adaptation to reduced pH was accompanied by alterations in the isozyme spectra of POD, 1- and 2-esterase, cytochrome c oxidase and malic enzyme (ME). The adaptation process of sugar beet regenerants was also accompanied by an increase in protein synthesis. The level of metabolic response to stress very much depended on the initial genotype of the hybrid. In this experiment, aluminium resistant plants were growing rapidly in selective media. They developed leaves with healthy petioles and blades and had strong root systems.展开更多
Tomato(Solanum lycopersicum)is one of the most widely grown and consumed as fresh vegetable in the world.Sclerotium rolfsii Sacc.is one of the most destructive diseases and affects more than 500 plant species.This stu...Tomato(Solanum lycopersicum)is one of the most widely grown and consumed as fresh vegetable in the world.Sclerotium rolfsii Sacc.is one of the most destructive diseases and affects more than 500 plant species.This study was conducted for“Evaluation of Selected Chemical,Biological Fungicides,and Induced Resistant to Control White Rot(Sclerotium rolfsii Sacc.)on Tomato”.The experiment was conducted at the Royal University of Agriculture and divided into two sections.The first section conducted under in vitro condition consists of four treatments T1 control treatment,T2 copper hydroxide,T3 azoxystrobin+difenoconazole,T4 metalaxyl+mancozeb in Nagoya Laboratory,and had been starting from 11st May to 15th May 2020.Section two was conducted in a pot in net-house which started from 1st January 2019 to 19th February 2019 and 1st January to 19th February 2020 and arranged in RCBD(Randomized Completely Block Design)with six replications and nine treatments.T0 negative control,T1 inoculate but not treatment,T2 metalaxyl+mancozeb,T3 azoxystrobin+difenoconazole,T4 copper hydroxide,T5 acibenzolar-S-methyl,T6 chicken dung+Trichoderma harzianum,T7 acibenzolar-S-methyl+chicken dung+Trichoderma harzianum,T8 acibenzolar-S-methyl+metalaxyl+mancozeb.Data were collected on colonizing diameter in vitro.For pot experiment collected on disease incidence,incubation period Based on the result under in vitro condition metalaxyl+mancozeb highly inhibited germination of Sclerotium rolfsii when compared with another treatment.However,the application of copper hydroxide seems less effective compared with control.For in pot experiment,when treated after symptom of southern blight appeared to seem less effective on the severity of southern blight.In contrast,when applied as a protectant and curative when symptoms appeared only systemic fungicide azoxystrobin+difenoconazole significantly reduced the severity of Sclerotium rolfsii and delayed incubation period while compared with other treatments(p<0.05)and was followed by metalaxyl+mancozeb,whereas,copper hydroxide,acibenzolar-S-methyl,chicken dung+Trichoderma harzianum,acibenzolar-S-methyl+chicken dung+Trichoderma harzianum,acibenzolar-S-methyl+metalaxyl+mancozeb were less effective(p>0.05).Based on the three experiments we can assume that fungicide is more effective in reducing the growth of the pathogen and delaying the incubation period of fungal colonization when compared with biological control and induced resistance.展开更多
We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the elect...We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.展开更多
In this study, the effects of a silicon (Si) application on the biomass, chlorophyll level and silicon level of sugarcane moderate pest resistance (RB72454) and susceptible (SP801842) cultivars were tested. Investigat...In this study, the effects of a silicon (Si) application on the biomass, chlorophyll level and silicon level of sugarcane moderate pest resistance (RB72454) and susceptible (SP801842) cultivars were tested. Investigations were also carried out to assess the effect of silicon on Diatraea saccharalis infestation. The experiments were conducted in a greenhouse using the treatments consisting moderate pest resistant and susceptible culivar, with or without silicon application. The silicon was applied to the soil around the plants. The experiment was laid in complete randomized design with 4 treatments and 10 replicates. The data were subjected to an analysis of variance, and the averages were compared using the Tukey test (p ≤ 0.05). Significant changes were observed in the fresh and dry masses of the aerial portions and the root system, as well as in the plant chlorophyll and silicon levels. The silicon content increased in the susceptible variety which was significantly equal for moderate resistance variety. Chlorophyll content increased in silicon treated cultivars. Sixty days after the last application, 10 adult D. saccharalis moths were released onto each pot. However, due to the low infestation, the effects of silicon on the insect incidence could not be determined. One can conclude that silicon is beneficial for the growth of the aerial portions of sugarcane and causes a significant increase in chlorophyll levels.展开更多
1 mL of sporangial suspensions (5 x 10 5spporangia per milliliter) of Pseudoperonospora cubensis was droplet-inoculated on the surface of the second leaf of the plant grown in greenhouse ( inducing inoculatoin), then ...1 mL of sporangial suspensions (5 x 10 5spporangia per milliliter) of Pseudoperonospora cubensis was droplet-inoculated on the surface of the second leaf of the plant grown in greenhouse ( inducing inoculatoin), then the lower surfaces of the third, the forth and the fifth leaves were uniformly sprayed with inoculum of the same fungi (5 x 10 4sporangia per milliliter, about 5 mL per plant) every 3 days interval (challenge inoculation). Plants were moistened at 18- 22 C for 18 h, then kept at room temperature (24 - 28 C) and supplemented with cool-white fluorescent lights. All three challenge leaves were collected after 7 days of challenge to measure the amount of sporulation and area of necrosis. Plants prior inoculated with P. cubensis were protected 38% (based on the area of necrosis) against disaesc caused by subsequent foliar challenge with the pathogen. Protective action was about 12% after 3 days, and maintained this level until 9 days, suddenly reached 34% after 12 days, and came to a maximum after 15 days, then dropped down slowly.展开更多
Compared with the use of monocultures in the field,cultivation of medicinal herbs in forests is an effective strategy to alleviate disease.Chemical interactions between herbs and trees play an important role in diseas...Compared with the use of monocultures in the field,cultivation of medicinal herbs in forests is an effective strategy to alleviate disease.Chemical interactions between herbs and trees play an important role in disease suppression in forests.We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves,identified the components via gas chromatography-mass spectrometry(GC-MS),and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing(RNA-seq).Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P.notoginseng to Alternaria panax.The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A.panax infection upregulated the expression of large number of genes,many of which are involved in transcription factor activity and the mitogen-activated protein kinase(MAPK) signaling pathway.Specifically,2,3-Butanediol spraying resulted in jasmonic acid(JA)-mediated induced systemic resistance(ISR) by activating MYC2 and ERF1.Moreover,2,3-Butanediol induced systemic acquired resistance(SAR) by upregulating pattern-triggered immunity(PTI)-and effector-triggered immunity(ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33.Overall,2,3-Butanediol from the leachates of pine needles could activate the resistance of P.notoginseng to leaf disease infection through ISR,SAR and camalexin biosynthesis.Thus,2,3-Butanediol is worth developing as a chemical inducer for agricultural production.展开更多
Sclerotinia stem rot,caused by Sclerotinia sclerotiorum,is a destructive soil-borne disease leading to huge yield loss.We previously reported that Klebsiella variicola FH-1 could degrade atrazine herbicides,and the ve...Sclerotinia stem rot,caused by Sclerotinia sclerotiorum,is a destructive soil-borne disease leading to huge yield loss.We previously reported that Klebsiella variicola FH-1 could degrade atrazine herbicides,and the vegetative growth of atrazine-sensitive crops(i.e.,soybean)was significantly increased in the FH-1-treated soil.Interestingly,we found that FH-1 could promote soybean growth and induce resistance to S.sclerotiorum.In our study,strain FH-1 could grow in a nitrogen-free environment,dissolve inorganic phosphorus and potassium,and produce indoleacetic acid and a siderophore.The results of pot experiments showed that K.variicola FH-1 promoted soybean plant development,substantially improving plant height,fresh weight,and root length,and induced resistance against S.sclerotiorum infection in soybean leaves.The area under the disease progression curve(AUDPC)for treatment with strain FH-1 was significantly lower than the control and was reduced by up to 42.2%within 48 h(P<0.001).Moreover,strain FH-1 rcovered the activities of catalase,superoxide dismutase,peroxidase,phenylalanine ammonia lyase,and polyphenol oxidase,which are involved in plant protection,and reduced malondialdehyde accumulation in the leaves.The mechanism of induction of resistance appeared to be primarily resulted from the enhancement of transcript levels of PR10,PR12,AOS,CHS,and PDF1.2 genes.The colonization of FH-1 on soybean root,determined using CLSM and SEM,revealed that FH-1 colonized soybean root surfaces,root hairs,and exodermis to form biofilms.In summary,K.variicola FH-1 exhibited the biological control potential by inducing resistance in soybean against S.sclerotiorum infection,providing new suggestions for green prevention and control.展开更多
In this paper,the main control methods of soft rot of Amorphophallus konjac are reviewed,with a focus on the current research status of using plant growth promoting rhizobacteria for biological control of soft rot of ...In this paper,the main control methods of soft rot of Amorphophallus konjac are reviewed,with a focus on the current research status of using plant growth promoting rhizobacteria for biological control of soft rot of A.konjac,and future research directions are looked forward to.展开更多
The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wound...The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.展开更多
[Objective] This study aimed to evaluate the effects of exogenous salicylic acid derivatives on tobacco resistance to TMV and activity of defense enzymes. [Method] The tobboco leaves were treated by exogenous salicyli...[Objective] This study aimed to evaluate the effects of exogenous salicylic acid derivatives on tobacco resistance to TMV and activity of defense enzymes. [Method] The tobboco leaves were treated by exogenous salicylic acid derivatives. Then, the disease occurrence was observed, and the activity of phenylalanin ammo- nia lyase (PAL) and peroxidase (POX) were measured. [Result] Exogenous salicylic acid derivative increased the activities of PAL and POX, while did not influence the resistance to TMV. [Conclusion] The result provides a theoretical basis for the study of plant disease resistance mechanisms.展开更多
基金This research is supported by National Natural Science Foundation of China (No.30170764)
文摘The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramibalis c.v and Populus deltoids) suffocated by Methyl jasmonate (MeJA) and Methyl salicylate (MeSA) were monitored for analyzing their functions in interplant communications by using high-pressure liquid chromatography (HPLC).The results showed that the contents of phenolic acids had obviously difference in leaves exposed to either MeSA or MeJA.When P.deltoides leaves exposed to MeJA or MeSA, the level of gallic acid, coumaric acid, caffeic acid, ferulic acid and benzoic acid was increased, gallic acid in leaves treated with MeJA comes to a peak at 24 h while to a peak at 12-d having leaves treated with MeSA.When P.Simonii ×P.Pyramibalis c.v leaves were exposed to MeJA or MeSA, the level of gallic acid, pyrocatechol and ferulic acid was increased; The catechinic acid and benzoic acid had a little drop; The caffeic acid and coumaric acid were undetected in both suffocated and control leaves.This changed pattern indicated that MeJA and MeSA can act as airborne signals to induce defense response of plants.
基金Supported by National Key Technology R&D Program During the Eleventh Five Year Plan (2006BAD08A04)Innovation Project(20076020)~~
文摘[Objective] This study was to understand the effects of β-Amino butyric acid(abbreviated as BABA) induced rice blast resistance on reactive oxygen metabolism. [Method] Using the cultivar Chaochan 2 that is highly susceptible to disease as experimental material, the changes of catalase(CAT), and superoxide dismutase(SOD) and MDA activities in rice treated by BABA were investigated. [Result] In rice plants treated by BABA, the activities of CAT and SOD increased, meanwhile the MDA content also rose to some extent, resulting in the disease resistance to rice blast. [Conclusion] By influencing reactive oxygen metabolism, BABA endows rice plants with resistance to rice blast. BABA is safe to environment and has highly resistance-inducing capacity, it could be generalized in production.
文摘[Objective] The aim was to explore the effect of tomato's resistance to Botrytis cinerea induced by exogenous Chitosan.[Method] The leaf spraying method was used to determine the induced resistance effect of Chitosan to tomato B.cinerea and the chlorophyll content,soluble protein,soluble sugar,proline influence,the activities of peroxidase(POD),malondialdehyde(MDA)and the Proline content in leaves of tomato.[Result] The induced resistance of Chitosan reached 58.26% at 14th d after treatment;Compared with the B.cinerea stress group,the chlorophyll content in leaves of tomato seedlings of B.cinerea stress + Chitosan group had increased by 34.63%,while that of soluble protein content,soluble sugar content,Pro content and POD activity was 5.30%,10.83%,16.21% and 16.88%,respectively(except for the MDA content,which was decreased by 16.54%).[Conclusion] Exogenous Chitosan could improve photosynthetic efficiency and protect enzymes activity to improve the resistance of tomato seedlings to B.cinerea.
基金Supported by Science and Technology Project of Educational Commission of Shandong Province of China( J07WJ48)~~
文摘[ Objectlve] The paper was to compare the induced resistance of several chemicals on cucumber against Pseudoperonospora cubensis [ Method ] When the cucumber seedlings grew to 4-leaf stage, the second true leaf was treated with salicylic acid, oxalate, chitosan, calcium nitrate and Na2HPO4, the activity of protective enzymes in the third leaf was determined after 7 d. At the same time, inoculation test was also conducted after induced treatment, and the disease condi- tion was coumed. [ Result ] These chemical treatments promoted protective enzyme activities (POD, SOD, PAL, PPO) in different degree, improved the ultra-weak luminescence, and reduced the disease index of cucumber leaves. [ Conclusion] Five chemical treatments expressed good effects on induced resistance. Among the treatments, oxalate had the best induced effect, followed by salicylic acid, chitosan, Na2 HPO4 and calcium nitrate.
文摘Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people and play an important role in the social fabric of many rural communities. Plantain banana cultivation encounters major problem of seedlings unavailability that are essential for the creation of new plantations, as well as parasitic constraints. Mycosphaerella fijiensis is the main pathogen attack constraints of banana plant responsible of black Sigatoka disease, and viruses, which can severely reduce the photosynthetic leaf area, leading to banana production losses of more than 80% in plantations with soil fertility problems. The repeated use of synthetic input is the origin of contamination to the environment, different pollution sources of plants and human health, as well as resistance to some strains of pathogens and plant fertilization problems over time. Recent works carried out in nursery have shown that vivoplants of plantains treated with biostimulants based on natural products notably Tithonia diversifolia biopromote good growth and less susceptibility to M. fijiensis. Indeed, an increase in agromorphological characteristics, good accumulation of growth and defense biomarkers was also observed. In this context, Tithonia diversifolia is shown to be involved in the stimulatory effect mechanism of growth promotion and defensive reaction of plantain vivoplants against various pathogens and it is suggested to be acting as a vital stimulator. This article reviews the current state of knowledge on plantain banana cultivation constraints and on the potential of Tithonia diversifolia in relation with its different stimulatory effects on plantain vivoplants.
文摘Resistance to maize southern leaf spot disease was induced by the low-concentration filtrate of Bipolaris maydis race T cultivation in an experiment. The nuclear neterogeny corn C103 was used as the test material. The lesion area on the leaves was significant difference by connalysis. The lesion areas on pretreated leaves were (0.3±0.05)- (0.9±0.5) mm^2, but those on the control were (23.1±8.7) mm^2. At the same time, the changes in peroxidase, phenylalanine, ammonialyase, and malondialdehvde activities were determined. During 0-96 h of inspection, phenylalanine and ammonialyase (PAL) activities increased by 64.2%, peroxidase (POD) activities increased by 41.2%, but the malondialdenvde (MDA) content decreased by 29.7% compared with the control. It seems that the low-concentration filtrate of Bipolaris maydis race T cultivation itself can be used as an elicitor to enhance the induced resistance.
基金China National Major Projects of Science&Technology(2014ZX100050022009ZX09103-436)+1 种基金the Young Academic Leader Raising Foundation of Yunnan Province(No.2009CI073)the foundation from Chinese Academy of Sciences to Gang Xu,and the Program for Research Team in South China Chinese Medicine Collaborative Innovation Center of Guangdong,China(A1-AFD01514A07).
文摘6a-Hydroxylup-20(29)-en-3-on-28-oic acid(1),a natural triterpenoid,was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes,and restoring glucose consuming ability in dexamethasone(DXM)-induced insulin resistant 3T3-L1 adipocytes.Compound 1 was also found to ameliorate DXM-induced adipocyte dysfunction in lipolysis and adipokine secretion.Mechanistic studies revealed that 1 inhibited adipocyte differentiation in 3T3-L1 preadipocytes via down-regulating hormone-stimulated gene transcription of peroxisome proliferator-activated receptor c and CCAAT-enhancer-binding protein alpha which are key factors in lipogenesis,and restored DXM-impaired glucose consuming ability in differentiated 3T3-L1 adipocytes via repairing insulin signaling pathway and activating down-stream signaling transduction by phosphorylation of signaling molecules PI3K/p85,Akt2 and AS160,thus leading to increased translocation of glucose transporter type 4 and transportation of glucose.
文摘[ Objective ] The paper was to explore the induced resistance of tomato against gray mold (Botrytis cinerea) by salicylic acid. [ Method ] SA was used as an inducer to treat tomato seedlings, the effects of SA on mycelial diameter and spore germination of B. cinerea were studied, and the changes of 4 defense enzyme activities containing catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL), as well as malondialdehyde (MDA) content during the production process of induced resistance were also measured. [ Result] SA had no inhibitory effect against spore germination and myce- lial growth of B. cinerea within the concentration range, and the relative induced effect had different degrees of improvement after treatment. The induced effect was the best as B. cinerea was challenged to inoculate at the third day after using 150 mg/L SA in tomato plants, and the duration of resistance was 10 -15 d. After treated by SA, CAT, POD, PPO and PAL first increased and then decreased in systemic induced resistance against B. cinerea, which were significantly higher than control. Meanwhile, MDA content showed ascendant trend in wavy line form. [ Conclusion ] The use of SA within a certain concentration range is safe; CAT, POD, PPO and PAL activities have positive correlation with induced resistance against B. cinerea, the increase of MDA content also has close relationship with the imvrovement of disease resistance.
基金Supported by National Natural Science Foundation of China(31360450)
文摘To explore rice blast resistance induced by Ag-antibiotic 702, different concentrations of Ag-antibiotic 702 were spayed on susceptible variety Luliangyou 996 at three-leaf and one-heart stage, to screen the optimal concentration for inducing rice blast resistance. Ag-antibiotic 702 was sprayed at seven different growth stages of rice, to determine the best growth stage for induced blast resistance and duration of blast resistance. Various treatments were inoculated with spore fluid of Magnaporthe grisea at 4 d post spraying, and disease index and incidence rate as well as induction effect of different treatments were investigated after 7 d. The results showed that six concentrations of Ag-antibiotic 702 could induce rice resistance against blast, and 15 μg/mL led to the highest blast resistance; spraying 15 μg/mL Ag-antibiotic 702 at seven different growth stages could induce rice resistance against blast ; the three-leaf and one-heart stage was the best growth stage for inducing rice blast resistance, and the relative induction effect reached 56.56% ; rice blast resistance was the highest at 48 -96 h post spraying, and duration of induced rice blast resistance exceeded 144 h. The study will provide useful experimental data for further development of Ag-antibiotic 702 and application of pre- vention and control methods against rice blast.
基金Supported by the Natural Science Foundation of Heilongjiang Province(C2017032)Heilongjiang Province Applied Technology Research and Development Program(GA19B104)National Key Research and Development Program(2018YFD0300105)。
文摘Rice sheath blight is one of the main diseases in rice production in China,which can make rice unable to absorb and utilize nutrients,and has a serious impact on rice yield and quality.In this study,exogenous ethylene was used to induce rice resistance against rice sheath blight,aiming at exploring a new environment-friendly control method of rice sheath blight.The results showed that within a range of certain concentrations,ethylene had no significant effects on mycelium growth,but it could induce resistance to sheath blight in rice.The optimum concentration was 0.2 mmol•L^(-1) and the relative control was 86.17%.It was found that ethylene could effectively increase the activities of peroxidase(POD),phenylalanine ammonia-lyase(PAL),β-1,3-glucanase and reduce the contents of malondialdehyde(MDA),which could enhance the resistance of rice against Rhizoctonia solani.In addition,qRT-PCR detected the expressions of rice defense genes,which indicated that the expressions of the POX,PAL and OsPR1b genes were up-regulated.
文摘The aim of the paper was to study the metabolite profile and morphological characteristics of sugar beet regenerants exposed to aluminium ions (Al^3+). The regenerants were selected basing on selective media with sublethal acidity (pH 3.5). The thrice-repeated passaging of sugar beet microclones of two genotypes in low pH medium causes certain alterations in the cellular metabolism. The paper demonstrated that peroxidase (POD) and isocitrate lyase (ICL) activity increased in both varieties. At the same time, NADH-dehydrogenase (NADH-DH) activity decreased in hybrid plants. Glucose-6-phosphate-dehydrogenase (gl-6-ph-dh) activity increased in mail sterile (MS) hybrid plants, but reduced in Ramonskaya fertile (RF) hybrid plants. Adaptation to reduced pH was accompanied by alterations in the isozyme spectra of POD, 1- and 2-esterase, cytochrome c oxidase and malic enzyme (ME). The adaptation process of sugar beet regenerants was also accompanied by an increase in protein synthesis. The level of metabolic response to stress very much depended on the initial genotype of the hybrid. In this experiment, aluminium resistant plants were growing rapidly in selective media. They developed leaves with healthy petioles and blades and had strong root systems.
基金iDE Cambodia(International Development Enterprises)and the Integrated Pest Management Innovation Lab funding my thesis experiments.
文摘Tomato(Solanum lycopersicum)is one of the most widely grown and consumed as fresh vegetable in the world.Sclerotium rolfsii Sacc.is one of the most destructive diseases and affects more than 500 plant species.This study was conducted for“Evaluation of Selected Chemical,Biological Fungicides,and Induced Resistant to Control White Rot(Sclerotium rolfsii Sacc.)on Tomato”.The experiment was conducted at the Royal University of Agriculture and divided into two sections.The first section conducted under in vitro condition consists of four treatments T1 control treatment,T2 copper hydroxide,T3 azoxystrobin+difenoconazole,T4 metalaxyl+mancozeb in Nagoya Laboratory,and had been starting from 11st May to 15th May 2020.Section two was conducted in a pot in net-house which started from 1st January 2019 to 19th February 2019 and 1st January to 19th February 2020 and arranged in RCBD(Randomized Completely Block Design)with six replications and nine treatments.T0 negative control,T1 inoculate but not treatment,T2 metalaxyl+mancozeb,T3 azoxystrobin+difenoconazole,T4 copper hydroxide,T5 acibenzolar-S-methyl,T6 chicken dung+Trichoderma harzianum,T7 acibenzolar-S-methyl+chicken dung+Trichoderma harzianum,T8 acibenzolar-S-methyl+metalaxyl+mancozeb.Data were collected on colonizing diameter in vitro.For pot experiment collected on disease incidence,incubation period Based on the result under in vitro condition metalaxyl+mancozeb highly inhibited germination of Sclerotium rolfsii when compared with another treatment.However,the application of copper hydroxide seems less effective compared with control.For in pot experiment,when treated after symptom of southern blight appeared to seem less effective on the severity of southern blight.In contrast,when applied as a protectant and curative when symptoms appeared only systemic fungicide azoxystrobin+difenoconazole significantly reduced the severity of Sclerotium rolfsii and delayed incubation period while compared with other treatments(p<0.05)and was followed by metalaxyl+mancozeb,whereas,copper hydroxide,acibenzolar-S-methyl,chicken dung+Trichoderma harzianum,acibenzolar-S-methyl+chicken dung+Trichoderma harzianum,acibenzolar-S-methyl+metalaxyl+mancozeb were less effective(p>0.05).Based on the three experiments we can assume that fungicide is more effective in reducing the growth of the pathogen and delaying the incubation period of fungal colonization when compared with biological control and induced resistance.
基金Supported by the Yarmouk Universitythe KUSTAR–KAIST Institution Fund
文摘We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.
基金the National Council for Scientific and Technological Development(Conselho Nacional de Desenvolvimento Cientifico e Tecnologico—CNPq)for providing a fellowship and other financial supportthe Minas Gerais Research Foundation(Fundacao de Pesquisa de Minas Gerais—FAPEMIG)for their financial support.
文摘In this study, the effects of a silicon (Si) application on the biomass, chlorophyll level and silicon level of sugarcane moderate pest resistance (RB72454) and susceptible (SP801842) cultivars were tested. Investigations were also carried out to assess the effect of silicon on Diatraea saccharalis infestation. The experiments were conducted in a greenhouse using the treatments consisting moderate pest resistant and susceptible culivar, with or without silicon application. The silicon was applied to the soil around the plants. The experiment was laid in complete randomized design with 4 treatments and 10 replicates. The data were subjected to an analysis of variance, and the averages were compared using the Tukey test (p ≤ 0.05). Significant changes were observed in the fresh and dry masses of the aerial portions and the root system, as well as in the plant chlorophyll and silicon levels. The silicon content increased in the susceptible variety which was significantly equal for moderate resistance variety. Chlorophyll content increased in silicon treated cultivars. Sixty days after the last application, 10 adult D. saccharalis moths were released onto each pot. However, due to the low infestation, the effects of silicon on the insect incidence could not be determined. One can conclude that silicon is beneficial for the growth of the aerial portions of sugarcane and causes a significant increase in chlorophyll levels.
文摘1 mL of sporangial suspensions (5 x 10 5spporangia per milliliter) of Pseudoperonospora cubensis was droplet-inoculated on the surface of the second leaf of the plant grown in greenhouse ( inducing inoculatoin), then the lower surfaces of the third, the forth and the fifth leaves were uniformly sprayed with inoculum of the same fungi (5 x 10 4sporangia per milliliter, about 5 mL per plant) every 3 days interval (challenge inoculation). Plants were moistened at 18- 22 C for 18 h, then kept at room temperature (24 - 28 C) and supplemented with cool-white fluorescent lights. All three challenge leaves were collected after 7 days of challenge to measure the amount of sporulation and area of necrosis. Plants prior inoculated with P. cubensis were protected 38% (based on the area of necrosis) against disaesc caused by subsequent foliar challenge with the pathogen. Protective action was about 12% after 3 days, and maintained this level until 9 days, suddenly reached 34% after 12 days, and came to a maximum after 15 days, then dropped down slowly.
基金supported by the National Key Research and Development Program of China (2017YFC1702502)the Major Science and Technology Project in Yunnan Province(202102AE090042+2 种基金202102AA310048-2)Science and Technology Project of Kunming (2021JH002)Innovative Research Team of Science and Technology in Yunnan Province (202105AE160016)。
文摘Compared with the use of monocultures in the field,cultivation of medicinal herbs in forests is an effective strategy to alleviate disease.Chemical interactions between herbs and trees play an important role in disease suppression in forests.We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves,identified the components via gas chromatography-mass spectrometry(GC-MS),and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing(RNA-seq).Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P.notoginseng to Alternaria panax.The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A.panax infection upregulated the expression of large number of genes,many of which are involved in transcription factor activity and the mitogen-activated protein kinase(MAPK) signaling pathway.Specifically,2,3-Butanediol spraying resulted in jasmonic acid(JA)-mediated induced systemic resistance(ISR) by activating MYC2 and ERF1.Moreover,2,3-Butanediol induced systemic acquired resistance(SAR) by upregulating pattern-triggered immunity(PTI)-and effector-triggered immunity(ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33.Overall,2,3-Butanediol from the leachates of pine needles could activate the resistance of P.notoginseng to leaf disease infection through ISR,SAR and camalexin biosynthesis.Thus,2,3-Butanediol is worth developing as a chemical inducer for agricultural production.
基金financially supported by the grants from the Inter-governmental International Cooperation Special Project of National Key R&D Program of China(2019YFE0114200)the Natural Science Foundation Project of Science and Technology Department of Jilin Province,China(20200201215JC).
文摘Sclerotinia stem rot,caused by Sclerotinia sclerotiorum,is a destructive soil-borne disease leading to huge yield loss.We previously reported that Klebsiella variicola FH-1 could degrade atrazine herbicides,and the vegetative growth of atrazine-sensitive crops(i.e.,soybean)was significantly increased in the FH-1-treated soil.Interestingly,we found that FH-1 could promote soybean growth and induce resistance to S.sclerotiorum.In our study,strain FH-1 could grow in a nitrogen-free environment,dissolve inorganic phosphorus and potassium,and produce indoleacetic acid and a siderophore.The results of pot experiments showed that K.variicola FH-1 promoted soybean plant development,substantially improving plant height,fresh weight,and root length,and induced resistance against S.sclerotiorum infection in soybean leaves.The area under the disease progression curve(AUDPC)for treatment with strain FH-1 was significantly lower than the control and was reduced by up to 42.2%within 48 h(P<0.001).Moreover,strain FH-1 rcovered the activities of catalase,superoxide dismutase,peroxidase,phenylalanine ammonia lyase,and polyphenol oxidase,which are involved in plant protection,and reduced malondialdehyde accumulation in the leaves.The mechanism of induction of resistance appeared to be primarily resulted from the enhancement of transcript levels of PR10,PR12,AOS,CHS,and PDF1.2 genes.The colonization of FH-1 on soybean root,determined using CLSM and SEM,revealed that FH-1 colonized soybean root surfaces,root hairs,and exodermis to form biofilms.In summary,K.variicola FH-1 exhibited the biological control potential by inducing resistance in soybean against S.sclerotiorum infection,providing new suggestions for green prevention and control.
基金Joint Special Project for Basic Research of Local Undergraduate Universities in Yunnan Province(202101BA070001-057)2021 Provincial College Student Innovation and Entrepreneurship Training Program Project in Yunnan Province(202111393018)Science Research Fund Project of Yunnan Provincial Department of Education(2022Y705,2023Y0857,2023Y0859).
文摘In this paper,the main control methods of soft rot of Amorphophallus konjac are reviewed,with a focus on the current research status of using plant growth promoting rhizobacteria for biological control of soft rot of A.konjac,and future research directions are looked forward to.
文摘The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.
基金Supported by University Student Science and Technology Innovation Plan of Zhejiang Province(2011R412033)~~
文摘[Objective] This study aimed to evaluate the effects of exogenous salicylic acid derivatives on tobacco resistance to TMV and activity of defense enzymes. [Method] The tobboco leaves were treated by exogenous salicylic acid derivatives. Then, the disease occurrence was observed, and the activity of phenylalanin ammo- nia lyase (PAL) and peroxidase (POX) were measured. [Result] Exogenous salicylic acid derivative increased the activities of PAL and POX, while did not influence the resistance to TMV. [Conclusion] The result provides a theoretical basis for the study of plant disease resistance mechanisms.