期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
1
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt PROLIFERATION spinal muscular atrophy-like
下载PDF
Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons
2
作者 Yalan Chen Junxin Kuang +5 位作者 Yimei Niu Hongyao Zhu Xiaoxia Chen Kwok-Fai So Anding Xu Lingling Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期908-914,共7页
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vi... Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development.Emerging evidence and impressive advances in human induced pluripotent stem cells,with tuned neural induction and differentiation protocols,makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible.Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol,we obtained multiple subtypes of neurons,including 20%tyrosine hydroxylase-positive dopaminergic neurons.To obtain more dopaminergic neurons,we next added sonic hedgehog(SHH)and fibroblast growth factor 8(FGF8)on day 8 of induction.This increased the proportion of dopaminergic neurons,up to 75%tyrosine hydroxylase-positive neurons,with 15%tyrosine hydroxylase and forkhead box protein A2(FOXA2)co-expressing neurons.We further optimized the induction protocol by applying the small molecule inhibitor,CHIR99021(CHIR).This helped facilitate the generation of midbrain dopaminergic neurons,and we obtained 31-74%midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining.Thus,we have established three induction protocols for dopaminergic neurons.Based on tyrosine hydroxylase and FOXA2 immunostaining analysis,the CHIR,SHH,and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons,which could be an ideal resource for tackling midbrain-related diseases. 展开更多
关键词 dopaminergic neurons FGF signal induced pluripotent stem cells MIDBRAIN neural differentiation SHH signal SMAD signal WNT signal
下载PDF
Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites
3
作者 Kirsty Goncalves Stefan Przyborski 《Neural Regeneration Research》 SCIE CAS 2025年第9期2645-2654,共10页
Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is be... Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is believed to induce neuritic abnormalities,including reduced growth,extension,and abnormal growth cone morphology,all of which contribute to decreased connectivity.However,the precise cellular and molecular mechanisms governing this response remain unknown.In this study,we used an innovative approach to demonstrate the effect of amyloid-βon neurite dynamics in both two-dimensional and three-dimensional cultu re systems,in order to provide more physiologically relevant culture geometry.We utilized various methodologies,including the addition of exogenous amyloid-βpeptides to the culture medium,growth substrate coating,and the utilization of human-induced pluripotent stem cell technology,to investigate the effect of endogenous amyloid-βsecretion on neurite outgrowth,thus paving the way for potential future applications in personalized medicine.Additionally,we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition.We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway,achieved through modulation with Y-27632(a ROCK inhibitor)and Ibuprofen(a Rho A inhibitor),respectively,can restore and even enhance neuronal connectivity in the presence of amyloid-β.In summary,this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition,but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-βpeptides,along with potential intervention points to restore neurite growth.Thereby,we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical,predictive outcomes of drugs and their ability to promote neurite outgrowth,both generally and in a patient-specific manner. 展开更多
关键词 Alzheimer's disease induced pluripotent stem cell neurite outgrowth neuron NOGO Rho A ROCK stem cell three-dimensional culture
下载PDF
Advances in the differentiation of pluripotent stem cells into vascular cells
4
作者 Yi-Chang Jiao Ying-Xin Wang +4 位作者 Wen-Zhu Liu Jing-Wen Xu Yu-Ying Zhao Chuan-Zhu Yan Fu-Chen Liu 《World Journal of Stem Cells》 SCIE 2024年第2期137-150,共14页
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve... Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed. 展开更多
关键词 Induced pluripotent stem cell Blood vessels Vascular organoids Endothelial cells Smooth muscle cells PERICYTES Tissue engineering vascular graft
下载PDF
Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell junction abnormalities and aberrant cellular differentiation potential
5
作者 Hang Zhang Ling-Zi Wu +1 位作者 Zhen-Yu Liu Zi-Bing Jin 《World Journal of Stem Cells》 SCIE 2024年第5期512-524,共13页
BACKGROUND Human induced pluripotent stem cell(hiPSC)technology is a valuable tool for generating patient-specific stem cells,facilitating disease modeling,and invest-igating disease mechanisms.However,iPSCs carrying ... BACKGROUND Human induced pluripotent stem cell(hiPSC)technology is a valuable tool for generating patient-specific stem cells,facilitating disease modeling,and invest-igating disease mechanisms.However,iPSCs carrying specific mutations may limit their clinical applications due to certain inherent characteristics.AIM To investigate the impact of MERTK mutations on hiPSCs and determine whether hiPSC-derived extracellular vesicles(EVs)influence anomalous cell junction and differentiation potential.METHODS We employed a non-integrating reprogramming technique to generate peripheral blood-derived hiPSCs with and hiPSCs without a MERTK mutation.Chromo-somal karyotype analysis,flow cytometry,and immunofluorescent staining were utilized for hiPSC identification.Transcriptomics and proteomics were employed to elucidate the expression patterns associated with cell junction abnormalities and cellular differentiation potential.Additionally,EVs were isolated from the supernatant,and their RNA and protein cargos were examined to investigate the involvement of hiPSC-derived EVs in stem cell junction and differentiation.RESULTS The generated hiPSCs,both with and without a MERTK mutation,exhibited normal karyotype and expressed pluripotency markers;however,hiPSCs with a MERTK mutation demonstrated anomalous adhesion capability and differentiation potential,as confirmed by transcriptomic and proteomic profiling.Furthermore,hiPSC-derived EVs were involved in various biological processes,including cell junction and differentiation.CONCLUSION HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential.Furthermore,hiPSC-derived EVs played a regulatory role in various biological processes,including cell junction and differentiation. 展开更多
关键词 cell junction cellular differentiation Extracellular vesicle Human induced pluripotent stem cells TRANSCRIPTOMICS Proteomics
下载PDF
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury 被引量:3
6
作者 Dingyue Ju Chuanming Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1751-1758,共8页
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t... Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury. 展开更多
关键词 BIOMATERIALS embryonic stem cells induced pluripotent stem cells mesenchymal stem cells nerve regeneration spinal cord injury stem cell therapy stem cells three-dimensional bioprinting
下载PDF
Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes 被引量:4
7
作者 Hai-Li Lang Yan-Zhi Zhao +4 位作者 Ren-Jie Xiao Jing Sun Yong Chen Guo-Wen Hu Guo-Hai Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期609-617,共9页
Postoperative cognitive dysfunction(POCD)is a common surgical complication.Diabetes mellitus(DM)increases risk of developing POCD after surgery.DM patients with POCD seriously threaten the quality of patients’life,ho... Postoperative cognitive dysfunction(POCD)is a common surgical complication.Diabetes mellitus(DM)increases risk of developing POCD after surgery.DM patients with POCD seriously threaten the quality of patients’life,however,the intrinsic mechanism is unclear,and the effective treatment is deficiency.Previous studies have demonstrated neuronal loss and reduced neurogenesis in the hippocampus in mouse models of POCD.In this study,we constructed a mouse model of DM by intraperitoneal injection of streptozotocin,and then induced postoperative cognitive dysfunction by transient bilateral common carotid artery occlusion.We found that mouse models of DM-POCD exhibited the most serious cognitive impairment,as well as the most hippocampal neural stem cells(H-NSCs)loss and neurogenesis decline.Subsequently,we hypothesized that small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells(iMSC-sEVs)might promote neurogenesis and restore cognitive function in patients with DM-POCD.iMSC-sEVs were administered via the tail vein beginning on day 2 after surgery,and then once every 3 days for 1 month thereafter.Our results showed that iMSC-sEVs treatment significantly recovered compromised proliferation and neuronal-differentiation capacity in H-NSCs,and reversed cognitive impairment in mouse models of DM-POCD.Furthermore,miRNA sequencing and qPCR showed miR-21-5p and miR-486-5p were the highest expression in iMSC-sEVs.We found iMSC-sEVs mainly transferred miR-21-5p and miR-486-5p to promote H-NSCs proliferation and neurogenesis.As miR-21-5p was demonstrated to directly targete Epha4 and CDKN2C,while miR-486-5p can inhibit FoxO1 in NSCs.We then demonstrated iMSC-sEVs can transfer miR-21-5p and miR-486-5p to inhibit EphA4,CDKN2C,and FoxO1 expression in H-NSCs.Collectively,these results indicate significant H-NSC loss and neurogenesis reduction lead to DM-POCD,the application of iMSC-sEVs may represent a novel cell-free therapeutic tool for diabetic patients with postoperative cognitive dysfunction. 展开更多
关键词 diabetes mellitus hippocampus induced pluripotent stem cell mesenchymal stem cell miRNA neural stem cell NEUROGENESIS postoperative cognitive dysfunction signaling pathway small extracellular vesicle
下载PDF
Neural lineage differentiation of human pluripotent stem cells:Advances in disease modeling 被引量:2
8
作者 Yuan-Wei Yan Eddie S Qian +1 位作者 Lauren E Woodard Julie Bejoy 《World Journal of Stem Cells》 SCIE 2023年第6期530-545,共16页
Brain diseases affect 1 in 6 people worldwide.These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease.Recent advancements in tissue-en... Brain diseases affect 1 in 6 people worldwide.These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease.Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models,tissue culture models,and epidemiologic patient data that are commonly used to study brain disease.One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells(hPSCs)to neural lineages including neurons,astrocytes,and oligodendrocytes.Three-dimensional models such as brain organoids have also been derived from hPSCs,offering more physiological relevance due to their incorporation of various cell types.As such,brain organoids can better model the pathophysiology of neural diseases observed in patients.In this review,we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models. 展开更多
关键词 Induced pluripotent stem cells ASTROCYTES OLIGODENDROCYTES MICROGLIA Brain organoids Assembloids
下载PDF
Application prospects of urine-derived stem cells in neurological and musculoskeletal diseases
9
作者 Hui-Si Yang Yue-Xiang Zheng +2 位作者 Xue Bai Xiu-Ying He Ting-Hua Wang 《World Journal of Orthopedics》 2024年第10期918-931,共14页
Urine-derived stem cells(USCs)are derived from urine and harbor the potential of proliferation and multidirectional differentiation.Moreover,USCs could be reprogrammed into pluripotent stem cells[namely urine-derived ... Urine-derived stem cells(USCs)are derived from urine and harbor the potential of proliferation and multidirectional differentiation.Moreover,USCs could be reprogrammed into pluripotent stem cells[namely urine-derived induced pluripotent stem cells(UiPSCs)]through transcription factors,such as octamer binding transcription factor 4,sex determining region Y-box 2,kruppel-like factor 4,myelocytomatosis oncogene,and Nanog homeobox and protein lin-28,in which the first four are known as Yamanaka factors.Mounting evidence supports that USCs and UiPSCs possess high potential of neurogenic,myogenic,and osteogenic differentiation,indicating that they may play a crucial role in the treatment of neurological and musculoskeletal diseases.Therefore,we summarized the origin and physiological characteristics of USCs and UiPSCs and their therapeutic application in neurological and musculoskeletal disorders in this review,which not only contributes to deepen our understanding of hallmarks of USCs and UiPSCs but also provides the theoretical basis for the treatment of neurological and musculoskeletal disorders with USCs and UiPSCs. 展开更多
关键词 Urine-derived stem cells Urine-derived induced pluripotent stem cells Neurological diseases Musculoskeletal diseases Treatment prospect
下载PDF
Transplantation of human induced pluripotent stem cell derived keratinocytes accelerates deep second-degree burn wound healing 被引量:1
10
作者 Li-Jun Wu Wei Lin +5 位作者 Jian-Jiang Liu Wei-Xin Chen Wen-Jun He Yuan Shi Xiao Liu Ke Li 《World Journal of Stem Cells》 SCIE 2023年第7期713-733,共21页
BACKGROUND Current evidence shows that human induced pluripotent stem cells(hiPSCs)can effectively differentiate into keratinocytes(KCs),but its effect on skin burn healing has not been reported.AIM To observe the eff... BACKGROUND Current evidence shows that human induced pluripotent stem cells(hiPSCs)can effectively differentiate into keratinocytes(KCs),but its effect on skin burn healing has not been reported.AIM To observe the effects of hiPSCs-derived KCs transplantation on skin burn healing in mice and to preliminarily reveal the underlying mechanisms.METHODS An analysis of differentially expressed genes in burn wounds based on GEO datasets GSE140926,and GSE27186 was established.A differentiation medium containing retinoic acid and bone morphogenetic protein 4 was applied to induce hiPSCs to differentiate into KCs.The expression of KCs marker proteins was detected using immunofluorescence staining.A model of a C57BL/6 mouse with deep cutaneous second-degree burn was created,and then phosphate buffered saline(PBS),hiPSCs-KCs,or hiPSCs-KCs with knockdown of COL7A1 were injected around the wound surface.The wound healing,re-epithelialization,engraftment of hiPSCs-KCs into wounds,proinflammatory factor level,and the NF-κB pathway proteins were assessed by hematoxylin-eosin staining,carboxifluorescein diacetate succinimidyl ester(CFSE)fluorescence staining,enzyme linked immunosorbent assay,and Western blotting on days 3,7,and 14 after the injection,respectively.Moreover,the effects of COL7A1 knockdown on the proliferation and migration of hiPSCs-KCs were confirmed by immunohistochemistry,EdU,Transwell,and damage repair assays.RESULTS HiPSCs-KCs could express the hallmark proteins of KCs.COL7A1 was down-regulated in burn wound tissues and highly expressed in hiPSCs-KCs.Transplantation of hiPSCs-KCs into mice with burn wounds resulted in a significant decrease in wound area,an increase in wound re-epithelialization,a decrease in proinflammatory factors content,and an inhibition of NF-κB pathway activation compared to the PBS group.The in vitro assay showed that COL7A1 knockdown could rescue the inhibition of hiPSCs-KCs proliferation and migration,providing further evidence that COL7A1 speeds up burn wound healing by limiting cell proliferation and migration.CONCLUSION In deep,second-degree burn wounds,COL7A1 can promote KC proliferation and migration while also suppressing the inflammatory response. 展开更多
关键词 Induced pluripotent stem cell KERATINOCYTES cell transplantation Burn wound healing COL7A1
下载PDF
Current overview of induced pluripotent stem cell-based blood-brain barrier-on-a-chip
11
作者 Arielly da Hora Alves Mariana Penteado Nucci +7 位作者 Nicole Mastandrea Ennes do Valle Juliana Morais Missina Javier Bustamante Mamani Gabriel Nery Albuquerque Rego Olivia Furiama Metropolo Dias Murilo Montenegro Garrigós Fernando Anselmo de Oliveira Lionel Fernel Gamarra 《World Journal of Stem Cells》 SCIE 2023年第6期632-651,共20页
BACKGROUND Induced pluripotent stem cells(iPSCs)show great ability to differentiate into any tissue,making them attractive candidates for pathophysiological investigations.The rise of organ-on-a-chip technology in the... BACKGROUND Induced pluripotent stem cells(iPSCs)show great ability to differentiate into any tissue,making them attractive candidates for pathophysiological investigations.The rise of organ-on-a-chip technology in the past century has introduced a novel way to make in vitro cell cultures that more closely resemble their in vivo environments,both structural and functionally.The literature still lacks consensus on the best conditions to mimic the blood-brain barrier(BBB)for drug screening and other personalized therapies.The development of models based on BBB-on-achip using iPSCs is promising and is a potential alternative to the use of animals in research.AIM To analyze the literature for BBB models on-a-chip involving iPSCs,describe the microdevices,the BBB in vitro construction,and applications.METHODS We searched for original articles indexed in PubMed and Scopus that used iPSCs to mimic the BBB and its microenvironment in microfluidic devices.Thirty articles were identified,wherein only 14 articles were finally selected according to the inclusion and exclusion criteria.Data compiled from the selected articles were organized into four topics:(1)Microfluidic devices design and fabrication;(2)characteristics of the iPSCs used in the BBB model and their differentiation conditions;(3)BBB-on-a-chip reconstruction process;and(4)applications of BBB microfluidic three-dimensional models using iPSCs.RESULTS This study showed that BBB models with iPSCs in microdevices are quite novel in scientific research.Important technological advances in this area regarding the use of commercial BBB-on-a-chip were identified in the most recent articles by different research groups.Conventional polydimethylsiloxane was the most used material to fabricate in-house chips(57%),whereas few studies(14.3%)adopted polymethylmethacrylate.Half the models were constructed using a porous membrane made of diverse materials to separate the channels.iPSC sources were divergent among the studies,but the main line used was IMR90-C4 from human fetal lung fibroblast(41.2%).The cells were differentiated through diverse and complex processes either to endothelial or neural cells,wherein only one study promoted differentiation inside the chip.The construction process of the BBB-on-a-chip involved previous coating mostly with fibronectin/collagen Ⅳ(39.3%),followed by cell seeding in single cultures(36%)or co-cultures(64%)under controlled conditions,aimed at developing an in vitro BBB that mimics the human BBB for future applications.CONCLUSION This review evidenced technological advances in the construction of BBB models using iPSCs.Nonetheless,a definitive BBB-on-a-chip has not yet been achieved,hindering the applicability of the models. 展开更多
关键词 Induced pluripotent stem cells cell differentiation Blood-brain barrier Neurovascular unit Organ-on-a-chip Microfluidic device
下载PDF
Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury 被引量:4
12
作者 Yao Shen Yi-Piao Wang +2 位作者 Xin Cheng Xuesong Yang Guang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1629-1636,共8页
Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict contr... Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict control of protein turnover in the stem cells to achieve cell remodeling. As a highly conserved “gatekeeper” of cell homeostasis, autophagy can regulate cell remodeling by precisely controlling protein turnover in cells. Recently, it has been found that the expression of autophagy markers changes in animal models of spinal cord injury. Therefore, understanding whether autophagy can affect the fate of stem cells and promote the repair of spinal cord injury is of considerable clinical value. This review expounds the importance of autophagy homeostasis control for the repair of spinal cord injury from three aspects—pathophysiology of spinal cord injury, autophagy and stem cell function, and autophagy and stem cell function in spinal cord injury—and proposes the synergistic therapeutic effect of autophagy and stem cells in spinal cord injury. 展开更多
关键词 AUTOPHAGY chaperone-mediated autophagy embryonic stem cells induced pluripotent stem cells INFLAMMATION mesenchymal stem cells neural stem cells oxidative stress spinal cord injury
下载PDF
Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells 被引量:2
13
作者 何琼 王惠荟 +4 位作者 程涛 袁卫平 马钰波 蒋永平 任志华 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第3期135-144,共10页
Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by ... Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay.Results The cell line bore a missense mutation in the 6th coding exon (c.676 C〉T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B. 展开更多
关键词 hemophilia B human induced pluripotent stem cells CRISPR/Cas9 genetic correction hepatic differentiation
下载PDF
Cell reprogramming therapy for Parkinson’s disease 被引量:5
14
作者 Wenjing Dong Shuyi Liu +1 位作者 Shangang Li Zhengbo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2444-2455,共12页
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ... Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease. 展开更多
关键词 animal models ASTROCYTES AUTOLOGOUS cell reprogramming cell therapy direct lineage reprogramming dopaminergic neurons induced pluripotent stem cells non-human primates Parkinson’s disease
下载PDF
Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells 被引量:65
15
作者 Zhihua Song Jun Cai +13 位作者 Yanxia Liu Dongxin Zhao Jun Yong Shuguang Duo Xijun Song Yushan Guo Yang Zhao Han Qin Xiaolei Yin Chen Wu Jie Che Shichun Lu Mingxiao Ding Hongkui Deng 《Cell Research》 SCIE CAS CSCD 2009年第11期1233-1242,共10页
Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iP... Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iPS cells has not yet been reported. In this report, human iPS cells were induced to differentiate into hepatic cells by a stepwise protocol. The expression of liver cell markers and liver-related functions of the human iPS cell-derived cells were monitored and compared with that of differentiated human ES cells and primary human hepatocytes. Approximately 60% of the differentiated human iPS cells at day 7 expressed hepatic markers alpha fetoprotein and Alb. The differentiated cells at day 21 exhibited liver cell functions including albumin Asecretion, glycogen synthesis, urea production and inducible cytochrome P450 activity. The expression of hepatic markers and fiver-related functions of the iPS cellderived hepatic ceils were comparable to that of the human ES cell-derived hepatic cells. These results show that human iPS cells, which are similar to human ES cells, can be efficiently induced to differentiate into hepatocyte-like cells. 展开更多
关键词 induced pluripotent stem cells IPS DIFFERENTIATION hepatic cells embryonic stem cells
下载PDF
Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study 被引量:13
16
作者 Yong Zhu Hong-Liang Hu +10 位作者 Peng Li Shi Yang Wei Zhang Hui Ding Ru-Hui Tian Ye Ning Ling-Ling Zhang Xi-Zhi Guo Zhan-Ping Shi Zheng Li Zuping He 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第4期574-579,共6页
Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not kn... Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitrodifferentiation and in vivotransplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in StraSand Vasa mRNA in the EBs derived from iPS cells, iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRal, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development. 展开更多
关键词 DIFFERENTIATION induced pluripotent stem cells male germ cells retinoic acid TRANSPLANTATION
下载PDF
Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy 被引量:3
17
作者 Yu Li Ping-Ping Shen Bin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第8期1500-1509,共10页
Spinal cord injury has long been a prominent challenge in the trauma repair process. Spinal cord injury is a research hotspot by virtue of its difficulty to treat and its escalating morbidity. Furthermore, spinal cord... Spinal cord injury has long been a prominent challenge in the trauma repair process. Spinal cord injury is a research hotspot by virtue of its difficulty to treat and its escalating morbidity. Furthermore, spinal cord injury has a long period of disease progression and leads to complications that exert a lot of mental and economic pressure on patients. There are currently a large number of therapeutic strategies for treating spinal cord injury, which range from pharmacological and surgical methods to cell therapy and rehabilitation training. All of these strategies have positive effects in the course of spinal cord injury treatment. This review mainly discusses the problems regarding stem cell therapy for spinal cord injury, including the characteristics and action modes of all relevant cell types. Induced pluripotent stem cells, which represent a special kind of stem cell population, have gained impetus in cell therapy development because of a range of advantages. Induced pluripotent stem cells can be developed into the precursor cells of each neural cell type at the site of spinal cord injury, and have great potential for application in spinal cord injury therapy. 展开更多
关键词 axon regeneration cell therapy functional recovery induced pluripotent stem cell mesenchymal stem cell neural cells neural precursor cell neural stem cell REMYELINATION spinal cord injury stem cells
下载PDF
Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements 被引量:3
18
作者 WahWah TheinHan Jun Liu +3 位作者 Minghui Tang Wenchuan Chen Linzhao Cheng Hockin H.K.Xu 《Bone Research》 SCIE CAS 2013年第4期371-384,共14页
Induced pluripotent stem ceils (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs),... Induced pluripotent stem ceils (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector, iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC: RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate, iPSC-MSCs were seeded on five biofunctionalized CPCs: CPC-RGD, CPC-Fn, CPC- FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and coUagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering, iPSC- MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/ orthopedic repairs. 展开更多
关键词 induced pluripotent stem cells RGD FIBRONECTIN platelet concentrate biofunctionalized calciumphosphate cement bone tissue engineering
下载PDF
Inducing human induced pluripotent stem cell differentiation through embryoid bodies:A practical and stable approach 被引量:6
19
作者 Ning-Ning Guo Li-Ping Liu +1 位作者 Yun-Wen Zheng Yu-Mei Li 《World Journal of Stem Cells》 SCIE 2020年第1期25-34,共10页
Human induced pluripotent stem cells(hiPSCs)are invaluable resources for producing high-quality differentiated cells in unlimited quantities for both basic research and clinical use.They are particularly useful for st... Human induced pluripotent stem cells(hiPSCs)are invaluable resources for producing high-quality differentiated cells in unlimited quantities for both basic research and clinical use.They are particularly useful for studying human disease mechanisms in vitro by making it possible to circumvent the ethical issues of human embryonic stem cell research.However,significant limitations exist when using conventional flat culturing methods especially concerning cell expansion,differentiation efficiency,stability maintenance and multicellular 3D structure establishment,differentiation prediction.Embryoid bodies(EBs),the multicellular aggregates spontaneously generated from iPSCs in the suspension system,might help to address these issues.Due to the unique microenvironment and cell communication in EB structure that a 2D culture system cannot achieve,EBs have been widely applied in hiPSC-derived differentiation and show significant advantages especially in scaling up culturing,differentiation efficiency enhancement,ex vivo simulation,and organoid establishment.EBs can potentially also be used in early prediction of iPSC differentiation capability.To improve the stability and feasibility of EB-mediated differentiation and generate high quality EBs,critical factors including iPSC pluripotency maintenance,generation of uniform morphology using micro-pattern 3D culture systems,proper cellular density inoculation,and EB size control are discussed on the basis of both published data and our own laboratory experiences.Collectively,the production of a large quantity of homogeneous EBs with high quality is important for the stability and feasibility of many PSCs related studies. 展开更多
关键词 Induced pluripotent stem cells Suspension culture Embryoid body Early prediction Committed differentiation HETEROGENEITY Three-dimensional culture SCALING-UP Quality control
下载PDF
Hepatitis B virus infection modeling using multi-cellular organoids derived from human induced pluripotent stem cells 被引量:3
20
作者 Di Cao Jian-Yun Ge +2 位作者 Yun Wang Tatsuya Oda Yun-Wen Zheng 《World Journal of Gastroenterology》 SCIE CAS 2021年第29期4784-4801,共18页
Chronic infection with hepatitis B virus(HBV)remains a global health concern despite the availability of vaccines.To date,the development of effective treatments has been severely hampered by the lack of reliable,repr... Chronic infection with hepatitis B virus(HBV)remains a global health concern despite the availability of vaccines.To date,the development of effective treatments has been severely hampered by the lack of reliable,reproducible,and scalable in vitro modeling systems that precisely recapitulate the virus life cycle and represent virus-host interactions.With the progressive understanding of liver organogenesis mechanisms,the development of human induced pluripotent stem cell(iPSC)-derived hepatic sources and stromal cellular compositions provides novel strategies for personalized modeling and treatment of liver disease.Further,advancements in three-dimensional culture of self-organized liver-like organoids considerably promote in vitro modeling of intact human liver tissue,in terms of both hepatic function and other physiological characteristics.Combined with our experiences in the investigation of HBV infections using liver organoids,we have summarized the advances in modeling reported thus far and discussed the limitations and ongoing challenges in the application of liver organoids,particularly those with multi-cellular components derived from human iPSCs.This review provides general guidelines for establishing clinical-grade iPSC-derived multi-cellular organoids in modeling personalized hepatitis virus infection and other liver diseases,as well as drug testing and transplantation therapy. 展开更多
关键词 Hepatitis B virus Induced pluripotent stem cells Liver organoid Multicellular organoid MODELING Transplantable
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部