BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen...BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.展开更多
Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibri...Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.展开更多
The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection methods.While recent st...The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection methods.While recent studies have made progress,a common challenge is the low accuracy of existing detection models.These models often struggle to reliably identify corrosion tendencies,which are crucial for minimizing industrial risks and optimizing resource use.The proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network(CNN),as well as two pretrained models,namely YOLOv8 and EfficientNetB0.By leveraging advanced technologies and methodologies,we have achieved high accuracies in identifying and managing the hazards associated with corrosion across various industrial settings.This advancement not only supports the overarching goals of enhancing safety and efficiency,but also sets a new benchmark for future research in the field.The results demonstrate a significant improvement in the ability to detect and mitigate corrosion-related concerns,providing a more accurate and comprehensive solution for industries facing these challenges.Both CNN and EfficientNetB0 exhibited 100%accuracy,precision,recall,and F1-score,followed by YOLOv8 with respective metrics of 95%,100%,90%,and 94.74%.Our approach outperformed state-of-the-art with similar datasets and methodologies.展开更多
The world has experienced 3 Industrial Revolutions.Right now,we are at the beginning of the 4th Industrial Revolution.4.0 Revolution is based on the digital revolution,characterized by the increasingly popular interne...The world has experienced 3 Industrial Revolutions.Right now,we are at the beginning of the 4th Industrial Revolution.4.0 Revolution is based on the digital revolution,characterized by the increasingly popular internet and mobile,by smaller and more powerful semiconductors at cheaper price and by Artificial Intelligence.Digital technologies with computer hardware,software and networks are becoming more and more complex,more integrated,thus transforming society.Faced with the unprecedented impact of the 4.0 Revolution,depending on the size of the economy and the level of technology,countries around the world have policies to adapt,catch up and take advantage of the achievements of the revolution.This revolution serves the sustainable development of our country.This article summarizes the policies of some countries such as Germany,the United States,Japan,Singapore,Republic of Korea,India,China,Taiwan,...under the impact of the 4.0 Revolution;thereby drawing lessons for Vietnam in the process of implementing the 4.0 Revolution to avoid negative impacts,take advantage of the pre-eminence of the revolution in socio-economic development.展开更多
基金Supported by Health Science and Technology Project of Tianjin Health Commission,No.ZC20190Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-005ATianjin Medical University Clinical Research Fund,No.22ZYYLCCG04.
文摘BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.
基金financially supported by the National Natural Science Foundation of China(No.51904250)the China Postdoctoral Science Foundation(No.2021M692254)+2 种基金the Sichuan Science and Technology Program(No.2022YFG0098)the Fundamental Research Funds for the Central Universities(Nos.2021CDSN-02,2022SCU12002,2022CDZG-17,2022CDSN-08,2022CDZG-9)the Hohhot Science and Technology Program(No.2023-Jie Bang Gua Shuai-Gao-3)。
文摘Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.
文摘The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection methods.While recent studies have made progress,a common challenge is the low accuracy of existing detection models.These models often struggle to reliably identify corrosion tendencies,which are crucial for minimizing industrial risks and optimizing resource use.The proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network(CNN),as well as two pretrained models,namely YOLOv8 and EfficientNetB0.By leveraging advanced technologies and methodologies,we have achieved high accuracies in identifying and managing the hazards associated with corrosion across various industrial settings.This advancement not only supports the overarching goals of enhancing safety and efficiency,but also sets a new benchmark for future research in the field.The results demonstrate a significant improvement in the ability to detect and mitigate corrosion-related concerns,providing a more accurate and comprehensive solution for industries facing these challenges.Both CNN and EfficientNetB0 exhibited 100%accuracy,precision,recall,and F1-score,followed by YOLOv8 with respective metrics of 95%,100%,90%,and 94.74%.Our approach outperformed state-of-the-art with similar datasets and methodologies.
文摘The world has experienced 3 Industrial Revolutions.Right now,we are at the beginning of the 4th Industrial Revolution.4.0 Revolution is based on the digital revolution,characterized by the increasingly popular internet and mobile,by smaller and more powerful semiconductors at cheaper price and by Artificial Intelligence.Digital technologies with computer hardware,software and networks are becoming more and more complex,more integrated,thus transforming society.Faced with the unprecedented impact of the 4.0 Revolution,depending on the size of the economy and the level of technology,countries around the world have policies to adapt,catch up and take advantage of the achievements of the revolution.This revolution serves the sustainable development of our country.This article summarizes the policies of some countries such as Germany,the United States,Japan,Singapore,Republic of Korea,India,China,Taiwan,...under the impact of the 4.0 Revolution;thereby drawing lessons for Vietnam in the process of implementing the 4.0 Revolution to avoid negative impacts,take advantage of the pre-eminence of the revolution in socio-economic development.