期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
An Efficient and Provably Secure SM2 Key-Insulated Signature Scheme for Industrial Internet of Things
1
作者 Senshan Ouyang Xiang Liu +3 位作者 Lei Liu Shangchao Wang Baichuan Shao Yang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期903-915,共13页
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar... With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle. 展开更多
关键词 KEY-INSULATED SM2 algorithm digital signature industrial Internet of things(iiot) provable security
下载PDF
A Double-Timescale Reinforcement Learning Based Cloud-Edge Collaborative Framework for Decomposable Intelligent Services in Industrial Internet of Things
2
作者 Zhang Qiuyang Wang Ying Wang Xue 《China Communications》 SCIE CSCD 2024年第10期181-199,共19页
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p... With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%. 展开更多
关键词 computing service edge intelligence industrial internet of things(iiot) reinforcement learning(RL)
下载PDF
Energy Minimization for Heterogenous Traffic Coexistence with Puncturing in Mobile Edge Computing-Based Industrial Internet of Things
3
作者 Wang Xue Wang Ying +1 位作者 Fei Zixuan Zhao Junwei 《China Communications》 SCIE CSCD 2024年第10期167-180,共14页
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform... Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks. 展开更多
关键词 energy minimization enhanced mobile broadband(eMBB)and ultra-reliable low latency communications(URLLC)coexistence industrial Internet of things(iiot) mobile edge computing(MEC) PUNCTURING
下载PDF
Edge Cloud Selection in Mobile Edge Computing(MEC)-Aided Applications for Industrial Internet of Things(IIoT)Services
4
作者 Dae-Young Kim SoYeon Lee +1 位作者 MinSeung Kim Seokhoon Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2049-2060,共12页
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im... In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method. 展开更多
关键词 industrial Internet of things(iiot)network iiot service mobile edge computing(MEC) edge cloud selection MEC-aided application
下载PDF
Anomaly Detection for Industrial Internet of Things Cyberattacks
5
作者 Rehab Alanazi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2361-2378,共18页
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver... The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial Internet of things(iiot) IOT industrial control systems(ICSs) X-iiotID
下载PDF
Intelligent Intrusion Detection for Industrial Internet of Things Using Clustering Techniques
6
作者 Noura Alenezi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2899-2915,共17页
The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical ... The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical and virtual worlds to create smart,cost-effective,and scalable systems.Although the IIoT has been implemented and incorporated into a wide range of industrial control systems,maintaining its security and privacy remains a significant concern.In the IIoT contexts,an intrusion detection system(IDS)can be an effective security solution for ensuring data confidentiality,integrity,and availability.In this paper,we propose an intelligent intrusion detection technique that uses principal components analysis(PCA)as a feature engineering method to choose the most significant features,minimize data dimensionality,and enhance detection performance.In the classification phase,we use clustering algorithms such as K-medoids and K-means to determine whether a given flow of IIoT traffic is normal or attack for binary classification and identify the group of cyberattacks according to its specific type for multi-class classification.To validate the effectiveness and robustness of our proposed model,we validate the detection method on a new driven IIoT dataset called X-IIoTID.The performance results showed our proposed detection model obtained a higher accuracy rate of 99.79%and reduced error rate of 0.21%when compared to existing techniques. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial internet of things(iiot) internet of things
下载PDF
An Efficient Security Solution for Industrial Internet of Things Applications 被引量:1
7
作者 Alaa Omran Almagrabi 《Computers, Materials & Continua》 SCIE EI 2022年第8期3961-3983,共23页
The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual need... The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual needs for new functionality,such as foresight,the number of linked devices in the industrial environment increases.Certification of fewer signatories gives strong authentication solutions and prevents trustworthy third parties from being publicly certified among available encryption instruments.Hence this blockchain-based endpoint protection platform(BCEPP)has been proposed to validate the network policies and reduce overall latency in isolation or hold endpoints.A resolver supports the encoded model as an input;network functions can be optimized as an output in an infrastructure network.The configuration of the virtual network functions(VNFs)involved fulfills network characteristics.The output ensures that the final service is supplied at the least cost,including processing time and network latency.According to the findings of this comparison,our design is better suited to simplified trust management in IIoT devices.Thus,the experimental results show the adaptability and resilience of our suggested confidence model against behavioral changes in hostile settings in IIoT networks.The experimental results show that our proposed method,BCEPP,has the following,when compared to other methods:high computational cost of 95.3%,low latency ratio of 28.5%,increased data transmitting rate up to 94.1%,enhanced security rate of 98.6%,packet reception ratio of 96.1%,user satisfaction index of 94.5%,and probability ratio of 33.8%. 展开更多
关键词 industrial internet of things(iiot) blockchain trusted third parties endpoint verification
下载PDF
Cyber Security and Privacy Issues in Industrial Internet of Things 被引量:1
8
作者 NZ Jhanjhi Mamoona Humayun Saleh NAlmuayqil 《Computer Systems Science & Engineering》 SCIE EI 2021年第6期361-380,共20页
The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.Howev... The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.However,this poses a challenge for cybersecurity and highlights the need to address the possible threats targeting(various pillars of)industry 4.0.However,before providing a concrete solution certain aspect need to be researched,for instance,cybersecurity threats and privacy issues in the industry.To fill this gap,this paper discusses potential solutions to cybersecurity targeting this industry and highlights the consequences of possible attacks and countermeasures(in detail).In particular,the focus of the paper is on investigating the possible cyber-attacks targeting 4 layers of IIoT that is one of the key pillars of Industry 4.0.Based on a detailed review of existing literature,in this study,we have identified possible cyber threats,their consequences,and countermeasures.Further,we have provided a comprehensive framework based on an analysis of cybersecurity and privacy challenges.The suggested framework provides for a deeper understanding of the current state of cybersecurity and sets out directions for future research and applications. 展开更多
关键词 industrial Internet of things(iiot) CYBERSECURITY industry 4.0 cyber-attacks
下载PDF
Analysis of Industrial Internet of Things and Digital Twins 被引量:1
9
作者 TAN Jie SHA Xiubin +1 位作者 DAI Bo LU Ting 《ZTE Communications》 2021年第2期53-60,共8页
The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the appl... The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the application of ultra-reliable and low latency communications(URLLC) in the 5G system. The data analysis model represented by digital twins isthe core of IIoT development in the manufacturing industry. In this paper, the efforts of3GPP are introduced for the development of URLLC in reducing delay and enhancing reliability,as well as the research on little jitter and high transmission efficiency. The enhancedkey technologies required in the IIoT are also analyzed. Finally, digital twins are analyzedaccording to the actual IIoT situation. 展开更多
关键词 digital twins industrial Internet of things(iiot) STANDARDS
下载PDF
Anomaly Detection Framework in Fog-to-Things Communication for Industrial Internet of Things
10
作者 Tahani Alatawi Ahamed Aljuhani 《Computers, Materials & Continua》 SCIE EI 2022年第10期1067-1086,共20页
The rapid development of the Internet of Things(IoT)in the industrial domain has led to the new term the Industrial Internet of Things(IIoT).The IIoT includes several devices,applications,and services that connect the... The rapid development of the Internet of Things(IoT)in the industrial domain has led to the new term the Industrial Internet of Things(IIoT).The IIoT includes several devices,applications,and services that connect the physical and virtual space in order to provide smart,cost-effective,and scalable systems.Although the IIoT has been deployed and integrated into a wide range of industrial control systems,preserving security and privacy of such a technology remains a big challenge.An anomaly-based Intrusion Detection System(IDS)can be an effective security solution for maintaining the confidentiality,integrity,and availability of data transmitted in IIoT environments.In this paper,we propose an intelligent anomalybased IDS framework in the context of fog-to-things communications to decentralize the cloud-based security solution into a distributed architecture(fog nodes)near the edge of the data source.The anomaly detection system utilizes minimum redundancy maximum relevance and principal component analysis as the featured engineering methods to select the most important features,reduce the data dimensionality,and improve detection performance.In the classification stage,anomaly-based ensemble learning techniques such as bagging,LPBoost,RUSBoost,and Adaboost models are implemented to determine whether a given flow of traffic is normal or malicious.To validate the effectiveness and robustness of our proposed model,we evaluate our anomaly detection approach on a new driven IIoT dataset called XIIoTID,which includes new IIoT protocols,various cyberattack scenarios,and different attack protocols.The experimental results demonstrated that our proposed anomaly detection method achieved a higher accuracy rate of 99.91%and a reduced false alarm rate of 0.1%compared to other recently proposed techniques. 展开更多
关键词 Anomaly detection anomaly-based IDS fog computing Internet of things(IoT) industrial Internet of things(iiot) IDS industrial Control Systems(ICSs)
下载PDF
How AI-enabled SDN technologies improve the security and functionality of industrial IoT network:Architectures,enabling technologies,and opportunities
11
作者 Jinfang Jiang Chuan Lin +3 位作者 Guangjie Han Adnan MAbu-Mahfouz Syed Bilal Hussain Shah Miguel Martínez-García 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1351-1362,共12页
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi... The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks. 展开更多
关键词 industrial internet of things(iiot) Industry 4.0 Artificial intelligence(AI) Machine intelligence Software-defined networking(SDN)
下载PDF
Smart and collaborative industrial IoT: A federated learning and data space approach
12
作者 Bahar Farahani Amin Karimi Monsefi 《Digital Communications and Networks》 SCIE CSCD 2023年第2期436-447,共12页
Industry 4.0 has become a reality by fusing the Industrial Internet of Things(IIoT)and Artificial Intelligence(AI),providing huge opportunities in the way manufacturing companies operate.However,the adoption of this p... Industry 4.0 has become a reality by fusing the Industrial Internet of Things(IIoT)and Artificial Intelligence(AI),providing huge opportunities in the way manufacturing companies operate.However,the adoption of this paradigm shift,particularly in the field of smart factories and production,is still in its infancy,suffering from various issues,such as the lack of high-quality data,data with high-class imbalance,or poor diversity leading to inaccurate AI models.However,data is severely fragmented across different silos owned by several parties for a range of reasons,such as compliance and legal concerns,preventing discovery and insight-driven IIoT innovation.Notably,valuable and even vital information often remains unutilized as the rise and adoption of AI and IoT in parallel with the concerns and challenges associated with privacy and security.This adversely influences interand intra-organization collaborative use of IIoT data.To tackle these challenges,this article leverages emerging multi-party technologies,privacy-enhancing techniques(e.g.,Federated Learning),and AI approaches to present a holistic,decentralized architecture to form a foundation and cradle for a cross-company collaboration platform and a federated data space to tackle the creeping fragmented data landscape.Moreover,to evaluate the efficiency of the proposed reference model,a collaborative predictive diagnostics and maintenance case study is mapped to an edge-enabled IIoT architecture.Experimental results show the potential advantages of using the proposed approach for multi-party applications accelerating sovereign data sharing through Findable,Accessible,Interoperable,and Reusable(FAIR)principles. 展开更多
关键词 Industry 4.0 industrial internet of things(iiot) Artificial intelligence(AI) Predictive maintenance(PdM) Condition monitoring(CM) Federated learning(FL) Privacy preservinig machine learning(PPML) Edge computing Fog computing Cloud computing
下载PDF
Cloud control for IIoT in a cloud-edge environment
13
作者 YAN Ce XIA Yuanqing +1 位作者 YANG Hongjiu ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1013-1027,共15页
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for... The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms. 展开更多
关键词 5G and time sensitive network(TSN) industrial Internet of things(iiot)workflow transmission control protocol(TCP)flows control cloud edge collaboration multi-objective optimal scheduling
下载PDF
Performance Analysis of Intelligent CR-NOMA Model for Industrial IoT Communications 被引量:5
14
作者 Yinghua Zhang Jian Liu +2 位作者 Yunfeng Peng Yanfang Dong Changming Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期239-257,共19页
Aiming for ultra-reliable low-latency wireless communications required in industrial internet of things(IIoT)applications,this paper studies a simple cognitive radio non-orthogonal multiple access(CR-NOMA)downlink sys... Aiming for ultra-reliable low-latency wireless communications required in industrial internet of things(IIoT)applications,this paper studies a simple cognitive radio non-orthogonal multiple access(CR-NOMA)downlink system.This system consists of two secondary users(SUs)dynamically interfered by the primary user(PU),and its performance is characterized by the outage probability of the SU communications.This outage probability is calculated under two conditions where,a)the transmission of PU starts after the channel state information(CSI)is acquired,so the base station(BS)is oblivious of the interference,and b)when the BS is aware of the PU interference,and the NOMA transmission is adapted to the more comprehensive knowledge of the signal to interference plus noise ratio(SINR).These results are verified by simulations,and their good agreement suggests our calculations can be used to reduce the complexity of future analysis.We find the outage probability is reduced when the SUs move further away from the primary transmitter or when the signal from PU is less powerful,and the BS always has better performance when it is aware of the interference.The findings thus emphasize the importance of monitoring the channel quality and realtime feedback to optimize the performance of CR-NOMA system. 展开更多
关键词 industrial internet of things(iiot) non-orthogonal multiple access(NOMA) quality of service(QoS) successive interference cancellation(SIC)
下载PDF
A multi-point collaborative DDoS defense mechanism for IIoT environment 被引量:2
15
作者 Hongcheng Huang Peixin Ye +1 位作者 Min Hu Jun Wu 《Digital Communications and Networks》 SCIE CSCD 2023年第2期590-601,共12页
Nowadays,a large number of intelligent devices involved in the Industrial Internet of Things(IIoT)environment are posing unprecedented cybersecurity challenges.Due to the limited budget for security protection,the IIo... Nowadays,a large number of intelligent devices involved in the Industrial Internet of Things(IIoT)environment are posing unprecedented cybersecurity challenges.Due to the limited budget for security protection,the IIoT devices are vulnerable and easily compromised to launch Distributed Denial-of-Service(DDoS)attacks,resulting in disastrous results.Unfortunately,considering the particularity of the IIoT environment,most of the defense solutions in traditional networks cannot be directly applied to IIoT with acceptable security performance.Therefore,in this work,we propose a multi-point collaborative defense mechanism against DDoS attacks for IIoT.Specifically,for the single point DDoS defense,we design an edge-centric mechanism termed EdgeDefense for the detection,identification,classification,and mitigation of DDoS attacks and the generation of defense information.For the practical multi-point scenario,we propose a collaborative defense model against DDoS attacks to securely share the defense information across the network through the blockchain.Besides,a fast defense information sharing mechanism is designed to reduce the delay of defense information sharing and provide a responsive cybersecurity guarantee.The simulation results indicate that the identification and classification performance of the two machine learning models designed for EdgeDefense are better than those of the state-of-the-art baseline models,and therefore EdgeDefense can defend against DDoS attacks effectively.The results also verify that the proposed fast sharing mechanism can reduce the propagation delay of the defense information blocks effectively,thereby improving the responsiveness of the multi-point collaborative DDoS defense. 展开更多
关键词 industrial internet of things(iiot) DDOS Deep learning Blockchain Edge computing
下载PDF
Optimization Scheme of Trusted Task Offloading in IIoT Scenario Based on DQN 被引量:1
16
作者 Xiaojuan Wang Zikui Lu +3 位作者 Siyuan Sun Jingyue Wang Luona Song Merveille Nicolas 《Computers, Materials & Continua》 SCIE EI 2023年第1期2055-2071,共17页
With the development of the Industrial Internet of Things(IIoT),end devices(EDs)are equipped with more functions to capture information.Therefore,a large amount of data is generated at the edge of the network and need... With the development of the Industrial Internet of Things(IIoT),end devices(EDs)are equipped with more functions to capture information.Therefore,a large amount of data is generated at the edge of the network and needs to be processed.However,no matter whether these computing tasks are offloaded to traditional central clusters or mobile edge computing(MEC)devices,the data is short of security and may be changed during transmission.In view of this challenge,this paper proposes a trusted task offloading optimization scheme that can offer low latency and high bandwidth services for IIoT with data security.Blockchain technology is adopted to ensure data consistency.Meanwhile,to reduce the impact of low throughput of blockchain on task offloading performance,we design the processes of consensus and offloading as a Markov decision process(MDP)by defining states,actions,and rewards.Deep reinforcement learning(DRL)algorithm is introduced to dynamically select offloading actions.To accelerate the optimization,we design a novel reward function for the DRL algorithm according to the scale and computational complexity of the task.Experiments demonstrate that compared with methods without optimization,our mechanism performs better when it comes to the number of task offloading and throughput of blockchain. 展开更多
关键词 Task offloading blockchain industrial internet of things(iiot) deep reinforcement learning(DRL)network mobile-edge computing(MEC)
下载PDF
A Novel Approach for Network Vulnerability Analysis in IIoT
17
作者 K.Sudhakar S.Senthilkumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期263-277,共15页
Industrial Internet of Things(IIoT)offers efficient communication among business partners and customers.With an enlargement of IoT tools connected through the internet,the ability of web traffic gets increased.Due to ... Industrial Internet of Things(IIoT)offers efficient communication among business partners and customers.With an enlargement of IoT tools connected through the internet,the ability of web traffic gets increased.Due to the raise in the size of network traffic,discovery of attacks in IIoT and malicious traffic in the early stages is a very demanding issues.A novel technique called Maximum Posterior Dichotomous Quadratic Discriminant Jaccardized Rocchio Emphasis Boost Classification(MPDQDJREBC)is introduced for accurate attack detection wi th minimum time consumption in IIoT.The proposed MPDQDJREBC technique includes feature selection and categorization.First,the network traffic features are collected from the dataset.Then applying the Maximum Posterior Dichotomous Quadratic Discriminant analysis to find the significant features for accurate classification and minimize the time consumption.After the significant features selection,classification is performed using the Jaccardized Rocchio Emphasis Boost technique.Jaccardized Rocchio Emphasis Boost Classification technique combines the weak learner result into strong output.Jaccardized Rocchio classification technique is considered as the weak learners to identify the normal and attack.Thus,proposed MPDQDJREBC technique gives strong classification results through lessening the quadratic error.This assists for proposed MPDQDJREBC technique to get better the accuracy for attack detection with reduced time usage.Experimental assessment is carried out with UNSW_NB15 Dataset using different factors such as accuracy,precision,recall,F-measure and attack detection time.The observed results exhibit the MPDQDJREBC technique provides higher accuracy and lesser time consumption than the conventional techniques. 展开更多
关键词 industrial internet of things(iiot) attack detection features selection maximum posterior dichotomous quadratic discriminant analysis jaccardized rocchio emphasis boost classification
下载PDF
工业物联网中数字孪生辅助任务卸载算法
18
作者 唐伦 单贞贞 +2 位作者 文明艳 李荔 陈前斌 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第4期1296-1305,共10页
针对工业物联网(IIoT)设备资源有限和边缘服务器资源动态变化导致的任务协同计算效率低等问题,该文提出一种工业物联网中数字孪生(DT)辅助任务卸载算法。首先,该算法构建了云-边-端3层数字孪生辅助任务卸载框架,在所创建的数字孪生层中... 针对工业物联网(IIoT)设备资源有限和边缘服务器资源动态变化导致的任务协同计算效率低等问题,该文提出一种工业物联网中数字孪生(DT)辅助任务卸载算法。首先,该算法构建了云-边-端3层数字孪生辅助任务卸载框架,在所创建的数字孪生层中生成近似最佳的任务卸载策略。其次,在任务计算时间和能量的约束下,从时延的角度研究了计算卸载过程中用户关联和任务划分的联合优化问题,建立了最小化任务卸载时间和服务失败惩罚的优化模型。最后,提出一种基于深度多智能体参数化Q网络(DMAPQN)的用户关联和任务划分算法,通过每个智能体不断地探索和学习,以获取近似最佳的用户关联和任务划分策略,并将该策略下发至物理实体网络中执行。仿真结果表明,所提任务卸载算法有效降低了任务协同计算时间,同时为每个计算任务提供近似最佳的卸载策略。 展开更多
关键词 工业物联网 数字孪生 边缘关联 任务划分 深度强化学习
下载PDF
天然气地下储气库智能化建设关键技术及其发展趋势 被引量:1
19
作者 糜利栋 曾大乾 +7 位作者 刘华 郭艳东 李彦峰 李遵照 孙旭东 张广权 鲁春华 王佩弦 《石油与天然气地质》 EI CAS CSCD 北大核心 2024年第2期581-592,共12页
中国储气库在数字化转型和智能化建设方面已经取得了重要成果,储气库智能化建设发展了油气藏-井筒-管网一体化耦合模拟和数字孪生等关键技术。搭建了智能储气库云平台框架,采用“数据+平台+应用”的建设模式,充分利用数据中心、物联网... 中国储气库在数字化转型和智能化建设方面已经取得了重要成果,储气库智能化建设发展了油气藏-井筒-管网一体化耦合模拟和数字孪生等关键技术。搭建了智能储气库云平台框架,采用“数据+平台+应用”的建设模式,充分利用数据中心、物联网和工业互联网等新型基础设施,支撑各业务板块管理、研究、生产和服务等需求。储气库智能化建设研发了储气库信息化管理平台、储气库一体化综合管理平台、基于数字孪生一体化仿真的决策系统和储气库全生命周期数字化平台。智能储气库未来建设将重点发展地质体数字孪生、高精度建模、可视化动态展示、智能运营、实时智能风险预警、工业软件国产化以及北斗卫星导航系统、卫星互联网等新技术。 展开更多
关键词 数字孪生 协同优化 工业物联网 地理信息系统 智能储气库 天然气
下载PDF
工业物联网中基于信息熵的联邦增量学习算法与优化
20
作者 杨睿哲 谢欣儒 +3 位作者 滕颖蕾 李萌 孙艳华 张大君 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3146-3154,共9页
面对工业生产过程中大规模、多样且随时间增长的数据和机器学习任务,该文提出一种基于信息熵的联邦增量学习(FIL)与优化方法。基于联邦框架,各本地计算节点可利用本地数据进行模型训练,并计算信息平均熵上传至服务器,以此辅助识别类增任... 面对工业生产过程中大规模、多样且随时间增长的数据和机器学习任务,该文提出一种基于信息熵的联邦增量学习(FIL)与优化方法。基于联邦框架,各本地计算节点可利用本地数据进行模型训练,并计算信息平均熵上传至服务器,以此辅助识别类增任务;全局服务器则根据本地反馈的平均熵选择参与当前轮次训练的本地节点,并判决任务是否产生增量后,进行全局模型下发与聚合更新。所提方法结合平均熵和阈值进行不同情况下的节点选择,实现低平均熵下的模型稳定学习和高平均熵下的模型增量式扩展。在此基础上,采用凸优化,在资源有限的情况下自适应地调整聚合频率和资源分配,最终实现模型的有效收敛。仿真结果表明,在不同的情景下,该文所提方法都可以加速模型收敛并提升训练精度。 展开更多
关键词 工业物联网 联邦增量学习 信息平均熵
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部