期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks 被引量:1
1
作者 Asad Raza Shahzad Memon +1 位作者 Muhammad Ali Nizamani Mahmood Hussain Shah 《Intelligent Automation & Soft Computing》 2024年第3期545-566,共22页
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl... Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments. 展开更多
关键词 industrial internet of things smart industrial environment cyber-attacks convolutional neural network ensemble learning
下载PDF
A compatible carbon efficiency information service framework based on the industrial internet identification
2
作者 Cheng Chi Yang Liu +3 位作者 Baoluo Ma Senchun Chai Puning Zhang Zihang Yin 《Digital Communications and Networks》 SCIE CSCD 2024年第4期884-894,共11页
Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will hel... Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services. 展开更多
关键词 industrial internet Identification and resolution Carbon emission data Carbon efficiency evaluation Carbon footprint tracking
下载PDF
An Efficient and Provably Secure SM2 Key-Insulated Signature Scheme for Industrial Internet of Things
3
作者 Senshan Ouyang Xiang Liu +3 位作者 Lei Liu Shangchao Wang Baichuan Shao Yang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期903-915,共13页
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar... With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle. 展开更多
关键词 KEY-INSULATED SM2 algorithm digital signature industrial internet of Things(IIoT) provable security
下载PDF
Age-Driven Joint Sampling and Non-Slot Based Scheduling for Industrial Internet of Things
4
作者 Cao Yali Teng Yinglei +1 位作者 Song Mei Wang Nan 《China Communications》 SCIE CSCD 2024年第11期190-204,共15页
Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly... Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors. 展开更多
关键词 Age of Information(AoI) industrial internet of Things(IIoT) Markov decision process(MDP) time sensitive systems URLLC
下载PDF
A Double-Timescale Reinforcement Learning Based Cloud-Edge Collaborative Framework for Decomposable Intelligent Services in Industrial Internet of Things
5
作者 Zhang Qiuyang Wang Ying Wang Xue 《China Communications》 SCIE CSCD 2024年第10期181-199,共19页
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p... With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%. 展开更多
关键词 computing service edge intelligence industrial internet of things(IIoT) reinforcement learning(RL)
下载PDF
Energy Minimization for Heterogenous Traffic Coexistence with Puncturing in Mobile Edge Computing-Based Industrial Internet of Things
6
作者 Wang Xue Wang Ying +1 位作者 Fei Zixuan Zhao Junwei 《China Communications》 SCIE CSCD 2024年第10期167-180,共14页
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform... Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks. 展开更多
关键词 energy minimization enhanced mobile broadband(eMBB)and ultra-reliable low latency communications(URLLC)coexistence industrial internet of Things(IIoT) mobile edge computing(MEC) PUNCTURING
下载PDF
ConGCNet:Convex geometric constructive neural network for Industrial Internet of Things
7
作者 Jing Nan Wei Dai +1 位作者 Chau Yuen Jinliang Ding 《Journal of Automation and Intelligence》 2024年第3期169-175,共7页
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n... The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate. 展开更多
关键词 industrial internet of Things Lightweight geometric constructive neural network Convex optimization RESOURCE-CONSTRAINED Matrix theory
下载PDF
Risk Analysis of Industrial Internet Identity System 被引量:1
8
作者 TANG Kai 《ZTE Communications》 2020年第1期44-48,共5页
The risks of the current identity system represented by Domain Name System(DNS)and Object Identifier(OID)are studied.According to the characteristics of the industrial Internet Identity(Ⅲ)system,four open ecosystem p... The risks of the current identity system represented by Domain Name System(DNS)and Object Identifier(OID)are studied.According to the characteristics of the industrial Internet Identity(Ⅲ)system,four open ecosystem planes are divided,and a corresponding risk analysis view is established to analyze risks for various planes.This paper uses Isaiah Berlin’s definition of liberty to more generally express the concept of security as positive rights and negative rights.In the risk analysis view,the target system is modeled from four dimensions:stakeholders,framework,architecture,and capability delivery.At last,three defensive lines are proposed to establish the identity credit system. 展开更多
关键词 industrial internet identity credit system risk analysis view right framework security attribute
下载PDF
Exploration of Industrial Internet Security Technology and Application from the Perspective of Generative Artificial Intelligence
9
作者 Dinggao Li Shengda Liao Zhuo Zheng 《Journal of Electronic Research and Application》 2024年第6期170-175,共6页
In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technolog... In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technologies such as big models and generative artificial intelligence has become a hot research issue.In this regard,this paper briefly analyzes the industrial Internet security technology and application from the perspective of generative artificial intelligence,hoping to provide some valuable reference and reference for readers. 展开更多
关键词 Generative artificial intelligence industrial internet security technology Application
下载PDF
Security Risk Analysis Model for Identification and Resolution System of Industrial Internet
10
作者 MA Baoluo CHEN Wenqu CHI Cheng 《ZTE Communications》 2020年第1期49-54,共6页
Identification and resolution system of the industrial Internet is the“neural hub”of the industrial Internet for coordination.Catastrophic damage to the whole industrial Internet industry ecology may be caused if th... Identification and resolution system of the industrial Internet is the“neural hub”of the industrial Internet for coordination.Catastrophic damage to the whole industrial Internet industry ecology may be caused if the identification and resolution system is attacked.Moreover,it may become a threat to national security.Therefore,security plays an important role in identification and resolution system of the industrial Internet.In this paper,an innovative security risk analysis model is proposed for the first time,which can help control risks from the root at the initial stage of industrial Internet construction,provide guidance for related enterprises in the early design stage of identification and resolution system of the industrial Internet,and promote the healthy and sustainable development of the industrial identification and resolution system. 展开更多
关键词 industrial internet identification and resolution system security risk analysis model
下载PDF
A Novel Secure Data Transmission Scheme in Industrial Internet of Things 被引量:26
11
作者 Hongwen Hui Chengcheng Zhou +1 位作者 Shenggang Xu Fuhong Lin 《China Communications》 SCIE CSCD 2020年第1期73-88,共16页
The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new ch... The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed. 展开更多
关键词 industrial internet of Things data transmission secure communication fractional-order chaotic systems
下载PDF
Recent advances in Industrial Internet:insights and challenges 被引量:19
12
作者 Wei Qin Siqi Chen Mugen Peng 《Digital Communications and Networks》 SCIE 2020年第1期1-13,共13页
The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devi... The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet. 展开更多
关键词 industrial internet Reference architectures Cloud computing Mobile edge computing Fog computing
下载PDF
MEC Enabled Cooperative Sensing and Resource Allocation for Industrial IoT Systems 被引量:4
13
作者 Yanpeng Dai Lihong Zhao Ling Lyu 《China Communications》 SCIE CSCD 2022年第7期214-225,共12页
In industrial Internet of Things systems,state estimation plays an important role in multisensor cooperative sensing.However,the state information received by remote control center experiences random delay,which inevi... In industrial Internet of Things systems,state estimation plays an important role in multisensor cooperative sensing.However,the state information received by remote control center experiences random delay,which inevitably affects the state estimation performance.Moreover,the computation and storage burden of remote control center is very huge,due to the large amount of state information from all sensors.To address this issue,we propose a layered network architecture and design the mobile edge computing(MEC)enabled cooperative sensing scheme.In particular,we first characterize the impact of random delay on the error of state estimation.Based on this,the cooperative sensing and resource allocation are optimized to minimize the state estimation error.The formulated constrained minimization problem is a mixed integer programming problem,which is effectively solved with problem decomposition based on the information content of delivered data packets.The improved marine predators algorithm(MPA)is designed to choose the best edge estimator for each sensor to pretreat the sensory information.Finally,the simulation results show the advantage and effectiveness of proposed scheme in terms of estimation accuracy. 展开更多
关键词 industrial internet of Things cooperative sensing MEC random delay
下载PDF
AID4I:An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning 被引量:1
14
作者 Anil Sezgin Aytug Boyacı 《Computers, Materials & Continua》 SCIE EI 2023年第8期2121-2143,共23页
By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The be... By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing. 展开更多
关键词 Automated machine learning intrusion detection system industrial internet of things parameter optimization
下载PDF
A New Model for Network Security Situation Assessment of the Industrial Internet 被引量:1
15
作者 Ming Cheng Shiming Li +3 位作者 Yuhe Wang Guohui Zhou Peng Han Yan Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第5期2527-2555,共29页
To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First... To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet. 展开更多
关键词 industrial internet network security situation assessment evidential reasoning belief rule base projection covariance matrix adaptive evolution strategy
下载PDF
An Efficient Security Solution for Industrial Internet of Things Applications 被引量:1
16
作者 Alaa Omran Almagrabi 《Computers, Materials & Continua》 SCIE EI 2022年第8期3961-3983,共23页
The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual need... The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual needs for new functionality,such as foresight,the number of linked devices in the industrial environment increases.Certification of fewer signatories gives strong authentication solutions and prevents trustworthy third parties from being publicly certified among available encryption instruments.Hence this blockchain-based endpoint protection platform(BCEPP)has been proposed to validate the network policies and reduce overall latency in isolation or hold endpoints.A resolver supports the encoded model as an input;network functions can be optimized as an output in an infrastructure network.The configuration of the virtual network functions(VNFs)involved fulfills network characteristics.The output ensures that the final service is supplied at the least cost,including processing time and network latency.According to the findings of this comparison,our design is better suited to simplified trust management in IIoT devices.Thus,the experimental results show the adaptability and resilience of our suggested confidence model against behavioral changes in hostile settings in IIoT networks.The experimental results show that our proposed method,BCEPP,has the following,when compared to other methods:high computational cost of 95.3%,low latency ratio of 28.5%,increased data transmitting rate up to 94.1%,enhanced security rate of 98.6%,packet reception ratio of 96.1%,user satisfaction index of 94.5%,and probability ratio of 33.8%. 展开更多
关键词 industrial internet of things(IIoT) blockchain trusted third parties endpoint verification
下载PDF
Anomaly Detection for Industrial Internet of Things Cyberattacks 被引量:1
17
作者 Rehab Alanazi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2361-2378,共18页
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver... The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial internet of Things(IIoT) IOT industrial control systems(ICSs) X-IIoTID
下载PDF
Cyber Security and Privacy Issues in Industrial Internet of Things 被引量:1
18
作者 NZ Jhanjhi Mamoona Humayun Saleh NAlmuayqil 《Computer Systems Science & Engineering》 SCIE EI 2021年第6期361-380,共20页
The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.Howev... The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.However,this poses a challenge for cybersecurity and highlights the need to address the possible threats targeting(various pillars of)industry 4.0.However,before providing a concrete solution certain aspect need to be researched,for instance,cybersecurity threats and privacy issues in the industry.To fill this gap,this paper discusses potential solutions to cybersecurity targeting this industry and highlights the consequences of possible attacks and countermeasures(in detail).In particular,the focus of the paper is on investigating the possible cyber-attacks targeting 4 layers of IIoT that is one of the key pillars of Industry 4.0.Based on a detailed review of existing literature,in this study,we have identified possible cyber threats,their consequences,and countermeasures.Further,we have provided a comprehensive framework based on an analysis of cybersecurity and privacy challenges.The suggested framework provides for a deeper understanding of the current state of cybersecurity and sets out directions for future research and applications. 展开更多
关键词 industrial internet of things(IIoT) CYBERSECURITY industry 4.0 cyber-attacks
下载PDF
Analysis of Industrial Internet of Things and Digital Twins 被引量:1
19
作者 TAN Jie SHA Xiubin +1 位作者 DAI Bo LU Ting 《ZTE Communications》 2021年第2期53-60,共8页
The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the appl... The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the application of ultra-reliable and low latency communications(URLLC) in the 5G system. The data analysis model represented by digital twins isthe core of IIoT development in the manufacturing industry. In this paper, the efforts of3GPP are introduced for the development of URLLC in reducing delay and enhancing reliability,as well as the research on little jitter and high transmission efficiency. The enhancedkey technologies required in the IIoT are also analyzed. Finally, digital twins are analyzedaccording to the actual IIoT situation. 展开更多
关键词 digital twins industrial internet of Things(IIoT) STANDARDS
下载PDF
An Industrial Internet Platform for Massive Pig Farming (IIP4MPF) 被引量:1
20
作者 Mu Gu Baocun Hou +3 位作者 Jiehan Zhou Kai Cao Xiaoshuang Chen Congcong Duan 《Journal of Computer and Communications》 2020年第12期181-196,共16页
Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific manage... Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific management methods. This paper proposes an industrial internet platform for massive pig farming, namely, IIP4MPF, which aims to leverage intelligent pig breeding, production rate and labor productivity with the use of artificial intelligence, the Internet of Things, and big data intelligence. We conducted requirement analysis for IIP4MPF using software engineering methods, designed the IIP4MPF system for an integrated solution to digital, interconnected, intelligent pig farming. The practice demonstrates that the IIP4MPF platform significantly improves pig farming industry in pig breeding and productivity. 展开更多
关键词 Massive Pig Farming industrial internet Platform
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部