Accidents involving industrial radiography are the most frequent cause of severe or fatal overexposure to workers and the public. On May 5, 2000, a radiation accident happened at a construction site in a gamma radiogr...Accidents involving industrial radiography are the most frequent cause of severe or fatal overexposure to workers and the public. On May 5, 2000, a radiation accident happened at a construction site in a gamma radiography practice at the village of Meet Halfa-Egypt. The accident was a severe overdose of non-radiation workers due to external exposure of Ir-192. This paper provides a methodology for calculating doses and dose rates from the most commonly used industrial γ-sources: 192Ir, 60Co, 134Cs, 137Cs and 131I. For this purpose, MCNP computer code based on Monte Carlo technique is used. The applied method helps firstly in studying and analyzing the doses from the above mentioned sources. Secondly, it provides a lead container design in a trial to reduce the dose rate within the permissible. Computer models were used to simulate the 192Ir Meet Halfa accident. To verify these models, the calculated doses were compared with a well-known empirical formula to convert source activity into dose rate and then the models were applied at different distances to analyze the factors that affect the deposited dose in the human body to find out the dose received by the victims.展开更多
The way to investigate the cause of an industrial accident is considered. It's important for the staff who investigate an accident to be the person who became independent from a production site. Moreover a special...The way to investigate the cause of an industrial accident is considered. It's important for the staff who investigate an accident to be the person who became independent from a production site. Moreover a special right has to be granted to the staff in the organization. The reason is because it's necessary that they have a different viewpoint from field overseer. The staff's viewpoint is a one related to the importance of the site preservation,necessity of an information feedback and the way to fill out an accident report. It was modeled in the last chapter about a relation of the various factors which have an influence on accident investigation.展开更多
The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgentdemand for most industrialized countries. In pollution...The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgentdemand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extentdepending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of thewhole accident process, a novel and expandable identification method for risk sources causingwater pollution accidents is presented. The newlydeveloped approach, by analyzing and stimulating thewhole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses,were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China,was selected to test the potential of the identification method. The results showed that therewere four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plantwould lead to the most serious impact on the surroundingwater environment. This potential accidentwould severelydamage the ecosystem up to3.8 kmdownstream of Yangtze River, and lead to pollution over adistance stretching to 73.7 kmdownstream. The proposed method is easily extended to the nationwide identification of potential risk sources.展开更多
文摘Accidents involving industrial radiography are the most frequent cause of severe or fatal overexposure to workers and the public. On May 5, 2000, a radiation accident happened at a construction site in a gamma radiography practice at the village of Meet Halfa-Egypt. The accident was a severe overdose of non-radiation workers due to external exposure of Ir-192. This paper provides a methodology for calculating doses and dose rates from the most commonly used industrial γ-sources: 192Ir, 60Co, 134Cs, 137Cs and 131I. For this purpose, MCNP computer code based on Monte Carlo technique is used. The applied method helps firstly in studying and analyzing the doses from the above mentioned sources. Secondly, it provides a lead container design in a trial to reduce the dose rate within the permissible. Computer models were used to simulate the 192Ir Meet Halfa accident. To verify these models, the calculated doses were compared with a well-known empirical formula to convert source activity into dose rate and then the models were applied at different distances to analyze the factors that affect the deposited dose in the human body to find out the dose received by the victims.
文摘The way to investigate the cause of an industrial accident is considered. It's important for the staff who investigate an accident to be the person who became independent from a production site. Moreover a special right has to be granted to the staff in the organization. The reason is because it's necessary that they have a different viewpoint from field overseer. The staff's viewpoint is a one related to the importance of the site preservation,necessity of an information feedback and the way to fill out an accident report. It was modeled in the last chapter about a relation of the various factors which have an influence on accident investigation.
基金supported by the National High Technology Research and Development Program(863) of China(No.2007AA06A402,2008AA06A404)the National Major Program of Science and Technology for Water Pollution Control and Governance(No.2012ZX07202-005)
文摘The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgentdemand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extentdepending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of thewhole accident process, a novel and expandable identification method for risk sources causingwater pollution accidents is presented. The newlydeveloped approach, by analyzing and stimulating thewhole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses,were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China,was selected to test the potential of the identification method. The results showed that therewere four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plantwould lead to the most serious impact on the surroundingwater environment. This potential accidentwould severelydamage the ecosystem up to3.8 kmdownstream of Yangtze River, and lead to pollution over adistance stretching to 73.7 kmdownstream. The proposed method is easily extended to the nationwide identification of potential risk sources.