With the advancement of the Industrial Internet of Things(IoT),the rapidly growing demand for data collection and processing poses a huge challenge to the design of data transmission and computation resources in the i...With the advancement of the Industrial Internet of Things(IoT),the rapidly growing demand for data collection and processing poses a huge challenge to the design of data transmission and computation resources in the industrial scenario.Taking advantage of improved model accuracy by machine learning algorithms,we investigate the inner relationship of system performance and data transmission and computation resources,and then analyze the impacts of bandwidth allocation and computation resources on the accuracy of the system model in this paper.A joint bandwidth allocation and computation resource configuration scheme is proposed and the Karush-Kuhn-Tucker(KKT)conditions are used to get an optimal bandwidth allocation and computation configuration decision,which can minimize the total computation resource requirement and ensure the system accuracy meets the industrial requirements.Simulation results show that the proposed bandwidth allocation and computation resource configuration scheme can reduce the computing resource usage by 10%when compared to the average allocation strategy.展开更多
In industrial Internet of Things systems,state estimation plays an important role in multisensor cooperative sensing.However,the state information received by remote control center experiences random delay,which inevi...In industrial Internet of Things systems,state estimation plays an important role in multisensor cooperative sensing.However,the state information received by remote control center experiences random delay,which inevitably affects the state estimation performance.Moreover,the computation and storage burden of remote control center is very huge,due to the large amount of state information from all sensors.To address this issue,we propose a layered network architecture and design the mobile edge computing(MEC)enabled cooperative sensing scheme.In particular,we first characterize the impact of random delay on the error of state estimation.Based on this,the cooperative sensing and resource allocation are optimized to minimize the state estimation error.The formulated constrained minimization problem is a mixed integer programming problem,which is effectively solved with problem decomposition based on the information content of delivered data packets.The improved marine predators algorithm(MPA)is designed to choose the best edge estimator for each sensor to pretreat the sensory information.Finally,the simulation results show the advantage and effectiveness of proposed scheme in terms of estimation accuracy.展开更多
Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising te...Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising technologies contribute to the unprecedented service in 5G.We establish a multiservice heterogeneous network model,which aims to raise the transmission rate under the delay constraints for active control terminals,and optimize the energy efficiency for passive network terminals.A policygradient-based deep reinforcement learning algorithm is proposed to make decisions on user association and power control in the continuous action space.Simulation results indicate the good convergence of the algorithm,and higher reward is obtained compared with other baselines.展开更多
The emergence of Beyond 5G(B5G)and 6G networks translated personal and industrial operations highly effective,reliable,and gainful by speeding up the growth of next generation Internet of Things(IoT).Industrial equipm...The emergence of Beyond 5G(B5G)and 6G networks translated personal and industrial operations highly effective,reliable,and gainful by speeding up the growth of next generation Internet of Things(IoT).Industrial equipment in 6G encompasses a huge number of wireless sensors,responsible for collecting massive quantities of data.At the same time,6G network can take real-world intelligent decisions and implement automated equipment operations.But the inclusion of different technologies into the system increased its energy consumption for which appropriate measures need to be taken.This has become mandatory for optimal resource allocation in 6G-enabled industrial applications.In this scenario,the current research paper introduces a new metaheuristic resource allocation strategy for clusterbased 6G industrial applications,named MRAS-CBIA technique.MRASCBIA technique aims at accomplishing energy efficiency and optimal resource allocation in 6G-enabled industrial applications.The proposed MRAS-CBIR technique involves three major processes.Firstly,Weighted Clustering Technique(WCT)is employed to elect the optimal Cluster Heads(CHs)or coordinating agents with the help of three parameters namely,residual energy,distance,and node degree.Secondly,Decision Tree-based Location Prediction(DTLP)mechanism is applied to determine the exact location of Management Agent(MA).Finally,Fuzzy C-means with Tunicate Swarm Algorithm(FCMTSA)is used for optimal resource allocation in 6G industrial applications.The performance of the proposed MRAS-CBIA technique was validated and the results were examined under different dimensions.The resultant experimental values highlighted the superior performance of MRAS-CBIR technique over existing state-of-the-art methods.展开更多
At present,water pollutant emission trading plays an increasingly important role in pollution control in many foreign countries,and its pilot studies and demonstration have also been started in China.In order to solve...At present,water pollutant emission trading plays an increasingly important role in pollution control in many foreign countries,and its pilot studies and demonstration have also been started in China.In order to solve the problem of initial allocation of emission permits:premise and basis of emission trading in a river basin,basic principles on initial allocation of actual emission permits in China are put forward.And it is thought that local development stage of industry should be taken into full account for initial allocation model of emission permits.There are five different allocation models in different development stages of industry,including models like distribution according to needs,improved same-rate reduction,performance,integration and environmental capacity,etc.The initial allocation of emission permits in various basins should choose a suitable model in accordance with their respective development stages.It is suggested in this article that integrated allocation model should be a main choice for current development stage of industry in China.展开更多
Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific...Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific regional and water conditions,to strengthen the constraints on water resources,the“three-step”adaptive management approach of“scheme design-scheme diagnosis-scheme optimization”of water resource allocation are adopted to facilitate the coordinated optimal allocation of water resources and industrial structure in the Beijing-Tianjin-Hebei regions.First,from the level of overall industry,a water resource allocation scheme for the regions is designed by applying the master-slave hierarchical mode and a bi-level optimal model to determine the ideal amount of water resource allocation for the regions and respective industries.Second,the diagnostic criteria of spatial balance,structural matching,and coordinated development are constructed to determine the rationality of the water resource allocation scheme.Then a benefit compensation function with water market transactions is developed,to adaptively adjust the water resource allocation scheme.Finally,the optimization and upgrading of industrial structure are promoted to improve water consumption efficiency and the coordinated development of the Beijing-Tianjin-Hebei regions.The study can provide reference for the Beijing-Tianjin-Hebei regions to realize the comprehensive optimal allocation of water resources in the regions and improve the adaptability of water resources and industrial structure optimization.展开更多
In order processing in the industrial Internet platform for textile and clothing,assigning optimal order quantities to each factory is the focus and the existing difficulty.The order allocation is a typical NP⁃hard pr...In order processing in the industrial Internet platform for textile and clothing,assigning optimal order quantities to each factory is the focus and the existing difficulty.The order allocation is a typical NP⁃hard problem in combinatorial optimization,and typical research of this kind is still at the initial stage.This paper aims to improve the optimization approach to select factories and to allocate proper orders to each one.It designs a genetic algorithm by making a deviation constraint rule for the initial population and introducing a penalty function to improve convergence.Remarkably,the objective functions of total cost along with the related constraints undergo optimization in the model.The experimental results indicate that the proposed algorithm can effectively solve the model and provide an optimal order allocation for multi⁃factories with less cost and computational duration.展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
This paper aims to investigate the effects of labor allocation distortions and various levels of distortion-free labor allocation on social output in China's primary,secondary and tertiary industries.Theoretical m...This paper aims to investigate the effects of labor allocation distortions and various levels of distortion-free labor allocation on social output in China's primary,secondary and tertiary industries.Theoretical model creation and empirical study have led us to the following findings:the quantity of workforce in China's primary industry exceeds the quantity of workforce under the scenario of distortion-free labor allocation and the same is generally true for China's tertiary industry.However,the quantity of labor allocation in secondary industry is significantly below the level of distortion-free allocation but the share of allocation distortion overall tends to decline.Labor allocation distortions for various sectors are mainly caused by intra-sectoral allocation distortions and sectoral wage differences,of which the effect of internal distortion factor is the most obvious.In terms of total output,the eliminations of total distortion,wage difference distortion and internal allocation distortion will all cause total social output to exceed original output,and labor reallocation accompanying capital change will not only bring about a further increase of output but may offset the defects of limited potentials of labor resources reallocation.Growth rates with the eliminations of wage difference distortion,internal allocation distortion and superimposed factor can basically explain for the growth rates with the elimination of all distortions.Given this background,it is necessary to take effective measures at an early date to reduce China s labor allocation distortions and improve overall economic efficiency.展开更多
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl...Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.展开更多
China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgradin...China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance indus...The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.展开更多
The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the...The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the pilot training and/or CsI feedback stage.In fact,the downlink communication generally includes three stages,i.e.,pilot training,CsI feedback,and data transmission.These three stages are mutually related and jointly determine the overall system performance.Unfortunately,there exist few studies on the reduction of csIT acquisition overhead from the global point of view.In this paper,we integrate the Minimum Mean Square Error(MMSE)channel estimation,Random Vector Quantization(RVQ)based limited feedback and Maximal Ratio Combining(MRC)precoding into a unified framework for investigating the resource allocation problem.In particular,we first approximate the covariance matrix of the quantization error with a simple expression and derive an analytical expression of the received Signal-to-Noise Ratio(SNR)based on the deterministic equivalence theory.Then the three performance metrics(the spectral efficiency,energy efficiency,and total energy consumption)oriented problems are formulated analytically.With practical system requirements,these three metrics can be collaboratively optimized.Finally,we propose an optimization solver to derive the optimal partition of channel coherence time.Experiment results verify the benefits of the proposed resource allocation schemes under three different scenarios and illustrate the tradeoff of resource allocation between three stages.展开更多
A real-time adaptive roles allocation method based on reinforcement learning is proposed to improve humanrobot cooperation performance for a curtain wall installation task.This method breaks the traditional idea that ...A real-time adaptive roles allocation method based on reinforcement learning is proposed to improve humanrobot cooperation performance for a curtain wall installation task.This method breaks the traditional idea that the robot is regarded as the follower or only adjusts the leader and the follower in cooperation.In this paper,a self-learning method is proposed which can dynamically adapt and continuously adjust the initiative weight of the robot according to the change of the task.Firstly,the physical human-robot cooperation model,including the role factor is built.Then,a reinforcement learningmodel that can adjust the role factor in real time is established,and a reward and actionmodel is designed.The role factor can be adjusted continuously according to the comprehensive performance of the human-robot interaction force and the robot’s Jerk during the repeated installation.Finally,the roles adjustment rule established above continuously improves the comprehensive performance.Experiments of the dynamic roles allocation and the effect of the performance weighting coefficient on the result have been verified.The results show that the proposed method can realize the role adaptation and achieve the dual optimization goal of reducing the sum of the cooperator force and the robot’s Jerk.展开更多
With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both local...With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation.展开更多
Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC a...Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC.展开更多
Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further...Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.展开更多
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t...Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.展开更多
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t...Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No. 62172445in part by the Young Talents Plan of Hunan Province,China
文摘With the advancement of the Industrial Internet of Things(IoT),the rapidly growing demand for data collection and processing poses a huge challenge to the design of data transmission and computation resources in the industrial scenario.Taking advantage of improved model accuracy by machine learning algorithms,we investigate the inner relationship of system performance and data transmission and computation resources,and then analyze the impacts of bandwidth allocation and computation resources on the accuracy of the system model in this paper.A joint bandwidth allocation and computation resource configuration scheme is proposed and the Karush-Kuhn-Tucker(KKT)conditions are used to get an optimal bandwidth allocation and computation configuration decision,which can minimize the total computation resource requirement and ensure the system accuracy meets the industrial requirements.Simulation results show that the proposed bandwidth allocation and computation resource configuration scheme can reduce the computing resource usage by 10%when compared to the average allocation strategy.
基金supported in part by National Natural Science Foundation of China under 62002042 and 62101089in part by China Postdoctoral Science Foundation under 2021M690022 and 2021M700655+1 种基金in part by Cooperative Scientific Research Project, Chunhui Program of Ministry of Education, P. R. Chinain part by the Fundamental Research Funds for the Central Universities (3132022246)
文摘In industrial Internet of Things systems,state estimation plays an important role in multisensor cooperative sensing.However,the state information received by remote control center experiences random delay,which inevitably affects the state estimation performance.Moreover,the computation and storage burden of remote control center is very huge,due to the large amount of state information from all sensors.To address this issue,we propose a layered network architecture and design the mobile edge computing(MEC)enabled cooperative sensing scheme.In particular,we first characterize the impact of random delay on the error of state estimation.Based on this,the cooperative sensing and resource allocation are optimized to minimize the state estimation error.The formulated constrained minimization problem is a mixed integer programming problem,which is effectively solved with problem decomposition based on the information content of delivered data packets.The improved marine predators algorithm(MPA)is designed to choose the best edge estimator for each sensor to pretreat the sensory information.Finally,the simulation results show the advantage and effectiveness of proposed scheme in terms of estimation accuracy.
基金supported by the National Natural Science Foundation of China under Grant No.61971057。
文摘Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising technologies contribute to the unprecedented service in 5G.We establish a multiservice heterogeneous network model,which aims to raise the transmission rate under the delay constraints for active control terminals,and optimize the energy efficiency for passive network terminals.A policygradient-based deep reinforcement learning algorithm is proposed to make decisions on user association and power control in the continuous action space.Simulation results indicate the good convergence of the algorithm,and higher reward is obtained compared with other baselines.
文摘The emergence of Beyond 5G(B5G)and 6G networks translated personal and industrial operations highly effective,reliable,and gainful by speeding up the growth of next generation Internet of Things(IoT).Industrial equipment in 6G encompasses a huge number of wireless sensors,responsible for collecting massive quantities of data.At the same time,6G network can take real-world intelligent decisions and implement automated equipment operations.But the inclusion of different technologies into the system increased its energy consumption for which appropriate measures need to be taken.This has become mandatory for optimal resource allocation in 6G-enabled industrial applications.In this scenario,the current research paper introduces a new metaheuristic resource allocation strategy for clusterbased 6G industrial applications,named MRAS-CBIA technique.MRASCBIA technique aims at accomplishing energy efficiency and optimal resource allocation in 6G-enabled industrial applications.The proposed MRAS-CBIR technique involves three major processes.Firstly,Weighted Clustering Technique(WCT)is employed to elect the optimal Cluster Heads(CHs)or coordinating agents with the help of three parameters namely,residual energy,distance,and node degree.Secondly,Decision Tree-based Location Prediction(DTLP)mechanism is applied to determine the exact location of Management Agent(MA).Finally,Fuzzy C-means with Tunicate Swarm Algorithm(FCMTSA)is used for optimal resource allocation in 6G industrial applications.The performance of the proposed MRAS-CBIA technique was validated and the results were examined under different dimensions.The resultant experimental values highlighted the superior performance of MRAS-CBIR technique over existing state-of-the-art methods.
基金Research sponsored by the Major Project of National Science and Technology of China(Grant no.2009ZX07210)
文摘At present,water pollutant emission trading plays an increasingly important role in pollution control in many foreign countries,and its pilot studies and demonstration have also been started in China.In order to solve the problem of initial allocation of emission permits:premise and basis of emission trading in a river basin,basic principles on initial allocation of actual emission permits in China are put forward.And it is thought that local development stage of industry should be taken into full account for initial allocation model of emission permits.There are five different allocation models in different development stages of industry,including models like distribution according to needs,improved same-rate reduction,performance,integration and environmental capacity,etc.The initial allocation of emission permits in various basins should choose a suitable model in accordance with their respective development stages.It is suggested in this article that integrated allocation model should be a main choice for current development stage of industry in China.
基金supported by the Humanities and Social Science Foundation of Ministry of Education“Research on the Optimal Adaptability of Basin Initial Water Rights and Industrial Structures under the Rigid Constraints of Water Resource”[Grant number.21YJCZH176]Beijing Municipal Natural Science Foundation of China“Research on Bi-directional Optimal Adaptability of Water Resource and Industrial Structures under the Coordinated Development of the Beijing-Tianjin-Hebei Region”(Grant number.9202005)+1 种基金the Humanities and Social Science Foundation of Ministry of Education“Research on Complex System Model of Industrial Water Rights Trading Based on Experimental Economics and Dynamic Simulation under Dual Control Action”[Grant number.20YJCZH095]General Projects of Social Science Plan of Beijing Municipal Education Commission[Grant number.SM201910009007].
文摘Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific regional and water conditions,to strengthen the constraints on water resources,the“three-step”adaptive management approach of“scheme design-scheme diagnosis-scheme optimization”of water resource allocation are adopted to facilitate the coordinated optimal allocation of water resources and industrial structure in the Beijing-Tianjin-Hebei regions.First,from the level of overall industry,a water resource allocation scheme for the regions is designed by applying the master-slave hierarchical mode and a bi-level optimal model to determine the ideal amount of water resource allocation for the regions and respective industries.Second,the diagnostic criteria of spatial balance,structural matching,and coordinated development are constructed to determine the rationality of the water resource allocation scheme.Then a benefit compensation function with water market transactions is developed,to adaptively adjust the water resource allocation scheme.Finally,the optimization and upgrading of industrial structure are promoted to improve water consumption efficiency and the coordinated development of the Beijing-Tianjin-Hebei regions.The study can provide reference for the Beijing-Tianjin-Hebei regions to realize the comprehensive optimal allocation of water resources in the regions and improve the adaptability of water resources and industrial structure optimization.
基金Shanghai Foundation for Development of Industrial Internet Innovation,China(No.2019⁃GYHLW⁃004)。
文摘In order processing in the industrial Internet platform for textile and clothing,assigning optimal order quantities to each factory is the focus and the existing difficulty.The order allocation is a typical NP⁃hard problem in combinatorial optimization,and typical research of this kind is still at the initial stage.This paper aims to improve the optimization approach to select factories and to allocate proper orders to each one.It designs a genetic algorithm by making a deviation constraint rule for the initial population and introducing a penalty function to improve convergence.Remarkably,the objective functions of total cost along with the related constraints undergo optimization in the model.The experimental results indicate that the proposed algorithm can effectively solve the model and provide an optimal order allocation for multi⁃factories with less cost and computational duration.
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金funded by National Social Sciences Foundation Program:Empirical Analysis and Countermeasures of Income Distribution Imbalances for Corporate Average Employees Based on Quality and Efficiency(Approval No.13BJY037)
文摘This paper aims to investigate the effects of labor allocation distortions and various levels of distortion-free labor allocation on social output in China's primary,secondary and tertiary industries.Theoretical model creation and empirical study have led us to the following findings:the quantity of workforce in China's primary industry exceeds the quantity of workforce under the scenario of distortion-free labor allocation and the same is generally true for China's tertiary industry.However,the quantity of labor allocation in secondary industry is significantly below the level of distortion-free allocation but the share of allocation distortion overall tends to decline.Labor allocation distortions for various sectors are mainly caused by intra-sectoral allocation distortions and sectoral wage differences,of which the effect of internal distortion factor is the most obvious.In terms of total output,the eliminations of total distortion,wage difference distortion and internal allocation distortion will all cause total social output to exceed original output,and labor reallocation accompanying capital change will not only bring about a further increase of output but may offset the defects of limited potentials of labor resources reallocation.Growth rates with the eliminations of wage difference distortion,internal allocation distortion and superimposed factor can basically explain for the growth rates with the elimination of all distortions.Given this background,it is necessary to take effective measures at an early date to reduce China s labor allocation distortions and improve overall economic efficiency.
文摘Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.
基金Under the auspices of National Natural Science Foundation of China(No.72074181)National Social Science Foundation of China(No.20CJY023)Innovation Capability Support Program of Shaanxi(No.2021KJXX-12)。
文摘China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
基金Under the auspices of the Natural Science Foundation Project of Heilongjiang Province(No.LH2019D009)。
文摘The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.
基金supported by the foundation of National Key Laboratory of Electromagnetic Environment(Grant No.JCKY2020210C 614240304)Natural Science Foundation of ZheJiang province(LQY20F010001)+1 种基金the National Natural Science Foundation of China under grant numbers 82004499State Key Laboratory of Millimeter Waves under grant numbers K202012.
文摘The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the pilot training and/or CsI feedback stage.In fact,the downlink communication generally includes three stages,i.e.,pilot training,CsI feedback,and data transmission.These three stages are mutually related and jointly determine the overall system performance.Unfortunately,there exist few studies on the reduction of csIT acquisition overhead from the global point of view.In this paper,we integrate the Minimum Mean Square Error(MMSE)channel estimation,Random Vector Quantization(RVQ)based limited feedback and Maximal Ratio Combining(MRC)precoding into a unified framework for investigating the resource allocation problem.In particular,we first approximate the covariance matrix of the quantization error with a simple expression and derive an analytical expression of the received Signal-to-Noise Ratio(SNR)based on the deterministic equivalence theory.Then the three performance metrics(the spectral efficiency,energy efficiency,and total energy consumption)oriented problems are formulated analytically.With practical system requirements,these three metrics can be collaboratively optimized.Finally,we propose an optimization solver to derive the optimal partition of channel coherence time.Experiment results verify the benefits of the proposed resource allocation schemes under three different scenarios and illustrate the tradeoff of resource allocation between three stages.
基金The research has been generously supported by Tianjin Education Commission Scientific Research Program(2020KJ056),ChinaTianjin Science and Technology Planning Project(22YDTPJC00970),China.The authors would like to express their sincere appreciation for all support provided.
文摘A real-time adaptive roles allocation method based on reinforcement learning is proposed to improve humanrobot cooperation performance for a curtain wall installation task.This method breaks the traditional idea that the robot is regarded as the follower or only adjusts the leader and the follower in cooperation.In this paper,a self-learning method is proposed which can dynamically adapt and continuously adjust the initiative weight of the robot according to the change of the task.Firstly,the physical human-robot cooperation model,including the role factor is built.Then,a reinforcement learningmodel that can adjust the role factor in real time is established,and a reward and actionmodel is designed.The role factor can be adjusted continuously according to the comprehensive performance of the human-robot interaction force and the robot’s Jerk during the repeated installation.Finally,the roles adjustment rule established above continuously improves the comprehensive performance.Experiments of the dynamic roles allocation and the effect of the performance weighting coefficient on the result have been verified.The results show that the proposed method can realize the role adaptation and achieve the dual optimization goal of reducing the sum of the cooperator force and the robot’s Jerk.
基金the Fundamental Research Program of Guangdong,China,under Grants 2020B1515310023 and 2023A1515011281in part by the National Natural Science Foundation of China under Grant 61571005.
文摘With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation.
基金supported by the Key Research and Development Project in Anhui Province of China(Grant No.202304a05020059)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023GDSK0055)the Project of Anhui Province Economic and Information Bureau(Grant No.JB20099).
文摘Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC.
文摘Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1005900the National Natural Science Foundation of China under Grant 62001220+3 种基金the Jiangsu Provincial Key Research and Development Program under Grants BE2022068the Natural Science Foundation of Jiangsu Province under Grants BK20200440the Future Network Scientific Research Fund Project FNSRFP-2021-YB-03the Young Elite Scientist Sponsorship Program,China Association for Science and Technology.
文摘Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.
基金This work was supported in part by the National Key R&D Program of China under Grant 2020YFB1005900the National Natural Science Foundation of China under Grant 62001220+3 种基金the Jiangsu Provincial Key Research and Development Program under Grants BE2022068the Natural Science Foundation of Jiangsu Province under Grants BK20200440the Future Network Scientific Research Fund Project FNSRFP-2021-YB-03the Young Elite Scientist Sponsorship Program,China Association for Science and Technology.
文摘Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.