This paper presents some opportunities to improve feedwater system efficiency for industrial boilers, usually consisting of multistage centrifugal pumps driven by three-phase induction motors. There is abundant litera...This paper presents some opportunities to improve feedwater system efficiency for industrial boilers, usually consisting of multistage centrifugal pumps driven by three-phase induction motors. There is abundant literature on the efficiency in steam boilers. However, few deal exclusively with feedwater systems. The total horsepower in boiler feed pumps and the corresponding energy consumption estimated for Brazilian industries are as follows: 110.5 MWE of motor driven power and a yearly electricity consumption of 442 GWh for a population of 7,800 steam boilers, approximately. It is estimated that there can be an efficiency improvement in feedwater systems for industrial boilers of 30% on average. To a large extent, these opportunities reside in older boilers that are very common in the Brazilian industrial sector. The most common causes for the low efficiency of feedwater systems are: the control loop of the feedwater, oversized boilers and excessive operational pressure set. Sometimes, the boiler feedwater system can present more than one problem simultaneously. Any kind of solution involves some speed regulation, new pump and number of pumps. Each problem generation facilities were selected in which common inefficiencies cases, the improvement in efficiency can get to 37%. form of intervention in boiler feed pumps, such as: impeller trim, may have more than one solution. Three distinct industrial steam are present. The suggested solutions were analyzed. In these three展开更多
The industrial energy diagnosis presented in this work occurred in a milk product cooperative, from an analysis of energy consumption in the main milk industrialization and a diagnosis of energy end uses of lighting a...The industrial energy diagnosis presented in this work occurred in a milk product cooperative, from an analysis of energy consumption in the main milk industrialization and a diagnosis of energy end uses of lighting and cooling systems. Almost all stages of milk industrialization are used hot water and steam generated in the boilers. The largest electricity consumption in this sector is by electric motors followed by cooling needed to maintain the quality of milk products. Because energy costs represent a significant portion of the monthly cost of the company, an analysis of the energy costs of the past two years to check the consumption of active and reactive energy and power demand contracted is performed. This paper presents the main results of an energy audit in a milk processing industry in southern Brazil.展开更多
This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).U...This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.展开更多
文摘This paper presents some opportunities to improve feedwater system efficiency for industrial boilers, usually consisting of multistage centrifugal pumps driven by three-phase induction motors. There is abundant literature on the efficiency in steam boilers. However, few deal exclusively with feedwater systems. The total horsepower in boiler feed pumps and the corresponding energy consumption estimated for Brazilian industries are as follows: 110.5 MWE of motor driven power and a yearly electricity consumption of 442 GWh for a population of 7,800 steam boilers, approximately. It is estimated that there can be an efficiency improvement in feedwater systems for industrial boilers of 30% on average. To a large extent, these opportunities reside in older boilers that are very common in the Brazilian industrial sector. The most common causes for the low efficiency of feedwater systems are: the control loop of the feedwater, oversized boilers and excessive operational pressure set. Sometimes, the boiler feedwater system can present more than one problem simultaneously. Any kind of solution involves some speed regulation, new pump and number of pumps. Each problem generation facilities were selected in which common inefficiencies cases, the improvement in efficiency can get to 37%. form of intervention in boiler feed pumps, such as: impeller trim, may have more than one solution. Three distinct industrial steam are present. The suggested solutions were analyzed. In these three
基金This work was developed as a part of research activities on energy engineering at the Universidade Estadual do Rio Grande do Sul(UERGS)The authors acknowledge the support received by the institutionThe fourth author acknowledges the financial support received from CNPq for his research work(proc.n.309021/2014-6).
文摘The industrial energy diagnosis presented in this work occurred in a milk product cooperative, from an analysis of energy consumption in the main milk industrialization and a diagnosis of energy end uses of lighting and cooling systems. Almost all stages of milk industrialization are used hot water and steam generated in the boilers. The largest electricity consumption in this sector is by electric motors followed by cooling needed to maintain the quality of milk products. Because energy costs represent a significant portion of the monthly cost of the company, an analysis of the energy costs of the past two years to check the consumption of active and reactive energy and power demand contracted is performed. This paper presents the main results of an energy audit in a milk processing industry in southern Brazil.
文摘This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.