The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the...The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength.展开更多
Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent join...Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process.展开更多
FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirr...FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.展开更多
Transport of charge carriers in percolating nanocluster devices based on bimetallic PdCu nanoclusters was investigated in this work. The device was fabricated by self-assembly of the nanoclusters between electrical el...Transport of charge carriers in percolating nanocluster devices based on bimetallic PdCu nanoclusters was investigated in this work. The device was fabricated by self-assembly of the nanoclusters between electrical electrodes inside an ultra-high vacuum compatible system. The average size of the produced nanoclusters was 7.3 nm, and the composition was Pdo.77Cuo.23. Systematic in situ current-voltage measurements as a function of temperature were per- formed which provide a conductance-temperature profile. The results are explained in terms of the charge carriers' tunneling through small potential barriers at the junctions between nanoclusters. The results predict the size of the nanoclusters as well as the magnitude of the potential difference of the tunneling barriers. This investigation helps understanding the nature of the interface between the nanoclusters and the charge carrier transport within those devices to be utilized for optimizing gas sensing properties of PdCu nanocluster devices.展开更多
文摘The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength.
基金Project(51405398) supported by the National Natural Science Foundation of China
文摘Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process.
文摘FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.
基金supported by the United Arab Emirates University under a Grant number FOS/IRG-23/11
文摘Transport of charge carriers in percolating nanocluster devices based on bimetallic PdCu nanoclusters was investigated in this work. The device was fabricated by self-assembly of the nanoclusters between electrical electrodes inside an ultra-high vacuum compatible system. The average size of the produced nanoclusters was 7.3 nm, and the composition was Pdo.77Cuo.23. Systematic in situ current-voltage measurements as a function of temperature were per- formed which provide a conductance-temperature profile. The results are explained in terms of the charge carriers' tunneling through small potential barriers at the junctions between nanoclusters. The results predict the size of the nanoclusters as well as the magnitude of the potential difference of the tunneling barriers. This investigation helps understanding the nature of the interface between the nanoclusters and the charge carrier transport within those devices to be utilized for optimizing gas sensing properties of PdCu nanocluster devices.