Thermoacoustically-driven pulse tube cooler can provide cryogenic cooling power with no moving com-ponents. Up to now, pulse tube cooler is directly coupled with the thermoacoustic engine and obtainable pressure ratio...Thermoacoustically-driven pulse tube cooler can provide cryogenic cooling power with no moving com-ponents. Up to now, pulse tube cooler is directly coupled with the thermoacoustic engine and obtainable pressure ratio for the pulse tube cooler is limited by the capability of the ther-moacoustic engine. The authors propose here the concept of acoustic amplifier, which is actually a long tube connecting the engine with the pulse tube cooler. Theoretical calculation shows that suitable length and diameter of the tube can lead to a pressure wave amplification effect which means that pressure wave amplitude coming from the thermoacoustic engine can be much amplified to drive the pulse tube cooler. Based on this, a 2.8 m long copper tube with 8 mm inner diameter is used as the acoustic amplifier in experiments. The experimental results show that due to the amplification effect, pressure wave amplitude at the inlet of the pulse tube cooler is over 2.5 times of that at the engine outlet. Typically, with 1.67 kW heating power, the pressure ratio provided by the engine is 1.11 while at the inlet of the pulse tube cooler the pressure ratio is 1.32, which leads to a lowest no-load temperature of 65.7 K.展开更多
This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube c...This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti- cally driven pulse tube coolers to reach the temperature below 70 K with such a high frequency.展开更多
基金supported by the Chinese Academy of Sciences(Project Number:KJCX2-SW-W12-l).
文摘Thermoacoustically-driven pulse tube cooler can provide cryogenic cooling power with no moving com-ponents. Up to now, pulse tube cooler is directly coupled with the thermoacoustic engine and obtainable pressure ratio for the pulse tube cooler is limited by the capability of the ther-moacoustic engine. The authors propose here the concept of acoustic amplifier, which is actually a long tube connecting the engine with the pulse tube cooler. Theoretical calculation shows that suitable length and diameter of the tube can lead to a pressure wave amplification effect which means that pressure wave amplitude coming from the thermoacoustic engine can be much amplified to drive the pulse tube cooler. Based on this, a 2.8 m long copper tube with 8 mm inner diameter is used as the acoustic amplifier in experiments. The experimental results show that due to the amplification effect, pressure wave amplitude at the inlet of the pulse tube cooler is over 2.5 times of that at the engine outlet. Typically, with 1.67 kW heating power, the pressure ratio provided by the engine is 1.11 while at the inlet of the pulse tube cooler the pressure ratio is 1.32, which leads to a lowest no-load temperature of 65.7 K.
基金the National Natural Science Foundation of China (Grant No. 50625620) the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW2-W02)
文摘This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti- cally driven pulse tube coolers to reach the temperature below 70 K with such a high frequency.