Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify th...Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify that the inertial reference system can perform reservation function under specified service conditions.That is,the inertial reference system shall pass certain environmental tests specified in DO⁃160G.Some tests are faced with the problem that the test equipment should have the function requirements of isolation protection and load simulation.Therefore,a kind of test equipment which can provide isolation protection and simulate load function in the test is designed.展开更多
In the fields of earth observation,deep space detection,laser communication,and directional energyweapon,the target needs to be observed and pointed at accurately.Acquisition,tracking,and pointing(ATP)systems are usua...In the fields of earth observation,deep space detection,laser communication,and directional energyweapon,the target needs to be observed and pointed at accurately.Acquisition,tracking,and pointing(ATP)systems are usually designed to stabilize the line of sight(LOS)within sub-micro radian levels.In the case of an ATP system mounted on a mobile platform,angular disturbances experienced by the mobile platform will seriously affect the LOS.To overcome the problemthat the sampling frequency of detectors is usually limited and achieving several hundreds of hertz is difficult,thewide-bandwidth inertial reference system(WBIRS)and fast steeringmirror are usually integrated into ATP systems to mitigate these angular disturbances.To reduce the structural stress,a flexible support providing two rotational degrees of freedomis usually adopted for the system.However,the occurrence of resonant points within the bandwidthwill be inevitable.Measurements have to be taken to compensate these low-frequency resonant points to realize a wide bandwidth and high precision.In this paper,the lowfrequency resonant points of a systemwere simulated using finite element analysis and tested by a systemidentification method.The results show that the first-order resonance happened at 34.5 Hz with a gain of 28 dB.An improved double-T notch filter was designed and applied in a real-time system to suppress the resonance at 34.5 Hz.The experimental results show that the resonance was significantly suppressed.In particular,the resonance peak was reduced by 79.37%.In addition,the closed-loop system settling time was reduced by 36.2%.展开更多
This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates...This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.展开更多
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
文摘Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify that the inertial reference system can perform reservation function under specified service conditions.That is,the inertial reference system shall pass certain environmental tests specified in DO⁃160G.Some tests are faced with the problem that the test equipment should have the function requirements of isolation protection and load simulation.Therefore,a kind of test equipment which can provide isolation protection and simulate load function in the test is designed.
基金supported by the Research on Key Problems of Wide-band Inertial Reference Based on Magnetohydrodynamics (Grant number 61733012)National Natural Science Foundation of China Youth Project (Grant number 61703303)+2 种基金Tianjin Natural Science Foundation Youth Project (Grant number No. 17JCQNJCo4100)State Key Laboratory of Precision Testing Technology and Instruments Open Project (Grant number No. PILAB1705)2017 Tianjin Education Commission Research Project (Grant number 2017KJ086)
文摘In the fields of earth observation,deep space detection,laser communication,and directional energyweapon,the target needs to be observed and pointed at accurately.Acquisition,tracking,and pointing(ATP)systems are usually designed to stabilize the line of sight(LOS)within sub-micro radian levels.In the case of an ATP system mounted on a mobile platform,angular disturbances experienced by the mobile platform will seriously affect the LOS.To overcome the problemthat the sampling frequency of detectors is usually limited and achieving several hundreds of hertz is difficult,thewide-bandwidth inertial reference system(WBIRS)and fast steeringmirror are usually integrated into ATP systems to mitigate these angular disturbances.To reduce the structural stress,a flexible support providing two rotational degrees of freedomis usually adopted for the system.However,the occurrence of resonant points within the bandwidthwill be inevitable.Measurements have to be taken to compensate these low-frequency resonant points to realize a wide bandwidth and high precision.In this paper,the lowfrequency resonant points of a systemwere simulated using finite element analysis and tested by a systemidentification method.The results show that the first-order resonance happened at 34.5 Hz with a gain of 28 dB.An improved double-T notch filter was designed and applied in a real-time system to suppress the resonance at 34.5 Hz.The experimental results show that the resonance was significantly suppressed.In particular,the resonance peak was reduced by 79.37%.In addition,the closed-loop system settling time was reduced by 36.2%.
基金Aeronautical Science Foundation of China(20080852011,20070852009)
文摘This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.