Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders p...Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.展开更多
This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argu...This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ...The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.展开更多
Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of...Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN.展开更多
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properti...Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.展开更多
Joining of dissimilar metals will offer many advantages in transportation sectors such as fuel consumption,weightreduction and emission reduction.However,joining of aluminium(Al)alloys with magnesium(Mg)alloys by fusi...Joining of dissimilar metals will offer many advantages in transportation sectors such as fuel consumption,weightreduction and emission reduction.However,joining of aluminium(Al)alloys with magnesium(Mg)alloys by fusion welding processis very complicated.Friction stir welding(FSW)is a feasible method to join these two dissimilar alloys.Mixing these two metalstogether in stir zone(SZ)leads to poor corrosion resistance.In this investigation,an attempt has been made to understand thecorrosion resistance of SZ of FSWed dissimilar joints of AA6061Al alloy and AZ31B Mg alloy.Potentiodynamic polarization testwas conducted by varying chloride ion concentration,pH value of the NaCl solution and exposure time.The corroded surfaces wereanalyzed using optical microscopy,scanning electron microscopy and XRD techniques.Of these three factors investigated,exposuretime is found to be the most significant factor to influence the corrosion behaviour of SZ of friction stir welded dissimilar joints ofAl/Mg alloys.展开更多
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c...The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.展开更多
The fusion welding of dissimilar heat treatable and non-heat treatable aluminium alloy faced many problems related to solidification. The difficulties can be overcome to achieve the combined beneficial properties of b...The fusion welding of dissimilar heat treatable and non-heat treatable aluminium alloy faced many problems related to solidification. The difficulties can be overcome to achieve the combined beneficial properties of both aluminium alloys using friction stir welding(FSW). The microstructural features and tensile properties of friction stir welded(FSW) similar and dissimilar joints made of AA6061 and AA5086 aluminium alloys were investigated. The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscopy. Microhardness was measured at various zones of the welded joints. The tensile properties of the joints were evaluated and correlated with the microstructural features and microhardness values. The dissimilar joint exhibits a maximum hardness of HV 115 and a joint efficiency of 56%. This was attributed to the defect free stir zone formation and grain size strengthening.展开更多
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat tre...Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.展开更多
Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool...Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.展开更多
It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium-titan...It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium-titanium dissimilar joint using tensile testing coupled with digital image correlation,optical and scanning electron microscopy,x-ray diffraction and microhardness measurements.Microstructurally different regions such as contact zone,dynamic recrystallized zone,thermo-mechanically affected zone,and partially deformed zone in the magnesium side were observed.No discernible regions were observed in the titanium side,as it had not undergone any significant plastic deformation.Phase analysis indicated that the aluminium from the magnesium side diffused toward the weld interface and formed a thin continuous intermetallic layer by reacting with the titanium.Microhardness mapping showed a steep hardness gradient from the titanium to magnesium side.Critical analysis is done on the tensile characteristics of the specimen and the response of the local regions to the deformation process is mapped.展开更多
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and m...Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.展开更多
Butt friction stir welding between pure copper and AA5754 alloy was carried out.Reinforcing SiC nanoparticles were utilized in friction stir welded(FSW)joints to decline the harmful effects of intermetallic compounds....Butt friction stir welding between pure copper and AA5754 alloy was carried out.Reinforcing SiC nanoparticles were utilized in friction stir welded(FSW)joints to decline the harmful effects of intermetallic compounds.Tensile tests,micro-hardness experiments,scanning electron microscopy and X-ray diffraction analysis were applied to studying the properties of welded joints.The joints with a travel speed of 50 mm/min and a rotation speed of 1000 r/min showed the best results.The presence of nano-sized SiC particles reduced the grain size of aluminum and copper in the stir zone(SZ)from 38.3 and 12.4μm to 12.9 and 5.1μm,respectively.The tensile strength of the joint in the presence of reinforcing SiC nano-particles was~240 MPa,which is~90%of that for the aluminum base.Furthermore,the highest microhardness of the weld zone was significantly increased from HV 160 to HV 320 upon the addition of SiC nano-particles.The results also showed that raising the heat generation in FSW joints increased the amount of Al_(4)Cu_(9) and Al_(2)Cu intermetallic compounds.展开更多
Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a fa...Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.展开更多
Dissimilar friction stir welding (FSW) of copper and aluminum was investigated by nine different tool designs, while the rest of the process parameters were kept constant. Mechanical and metallurgical tests such as ...Dissimilar friction stir welding (FSW) of copper and aluminum was investigated by nine different tool designs, while the rest of the process parameters were kept constant. Mechanical and metallurgical tests such as macrostructure, microstructure, tensile test, hardness, scanning electron microscope and electron X-ray spectrographs were performed to assess the properties of dissimilar joints. The results exhibited that, the maximum joint strength was achieved by the tool of cylindrical pin profile having 8 mm pin diameter. Besides, the fragmental defects increased as the number of polygonal edges decreased, hence the polygonal pin profiles were unsuitable for dissimilar FSW butt joints. Furthermore, the tensile strength increased as the number of polygonal edges increased. Stir zone of polygonal pin profiles was hard and brittle relative to cylindrical tool pin profiles for same shoulder surface. Maximum hardness of HV 283 was obtained at weld made by the polygonal square pin profile. The hard and brittle intermetallic compounds (IMCs) were prominently presented in the stir zone. Phases of IMCs such as CuAl, CuAl2, Cu3Al and Cu9Al4 were presented in the stir zone of dissimilar Cu-Al joints.展开更多
Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/...Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics,including high shear strength,long fatigue life,and strong corrosion resistance.In the meanwhile,as the key-hole free joint has different microstructures compared with conventional friction stir spot welding,thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms,which needs further investigation.To explore the underlying failure mechanism,the similar/dissimilar metallic material joining parameters and pre-treatment,mechanical properties,as well as fracture mechanisms under this novel technology will be discussed.In details,the welding tool design,welding parameters setting,and the influence of processing on the lap shear and fatigue properties,as well as the corrosion resistance will be mainly discussed.Moreover,the roadmap of RFFSW is also discussed.展开更多
For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials...For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials evaluated to be difficult for friction welding and non-round shape joints. In this process, after the intermediate material generates the independent friction heat on every side of the specimens, it is removed instantaneously and upset process begins to weld the specimens for a joint. In this study, similar joint of A2017 aluminum alloy and one of S45C steel were examined. On the other hand, thermal elastic-plastic stress analysis by the finite element method was carried out using ANSYS mechanical.展开更多
The welding of dissimilar materials is one of the challenging issues in the fabrication industry to obtain required quality welds using fusion welding methods.However,some processes recently improved interface bonding...The welding of dissimilar materials is one of the challenging issues in the fabrication industry to obtain required quality welds using fusion welding methods.However,some processes recently improved interface bonding with low joint strength.Unfortunately,the major intermetallic compounds could not alleviate from the joint interface.Alternatively,solid-state welding methods revealed fewer intermetallics at the joint interface for dissimilar material welds.Among them,friction welding was chosen to join incompatible materials with the necessary properties successfully.Friction time is a critical parameter for obtaining strong welds through friction welding,apart from friction pressure,forging pressure,forging time,and rotational speed.Variability of friction time can change the strength of friction by changing mechanical properties such as tensile strength.This change of tensile strength is typically influenced by the intermixing region,dependent on friction time.In this experiment,carbon steel and stainless steel have been friction welded to test the impact of friction time on the joint interface where the substrate’s faying surface meets.This interface consists of the intermixing region of the two materials on which the friction welding is performed.The results showed an interesting variation in tensile strength,with varying friction time.The width of the intermixing zone increased gradually with friction time until and decreased with the further increasing.The strength of the welds obtained was the highest of 730 MPa at a friction time of 4 s and fell as friction time’s increased value after 4 s.展开更多
基金sponsored by the Prince Sattam bin Abdulaziz University via project number 2023/RV/018。
文摘Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.
文摘This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.
基金Project (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities,China
文摘The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.
基金Project(20140204070GX) supported by the Key Science and Technology of Jilin Province,China
文摘Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN.
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金Universiti Kebangsaan Malaysia for supporting this research project through the research funding (AP-2015-016)
文摘Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
基金Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the financial support to carry out this investigation through sponsored project No. 22(0615)/13/EMR-II dated 26.02.2013
文摘Joining of dissimilar metals will offer many advantages in transportation sectors such as fuel consumption,weightreduction and emission reduction.However,joining of aluminium(Al)alloys with magnesium(Mg)alloys by fusion welding processis very complicated.Friction stir welding(FSW)is a feasible method to join these two dissimilar alloys.Mixing these two metalstogether in stir zone(SZ)leads to poor corrosion resistance.In this investigation,an attempt has been made to understand thecorrosion resistance of SZ of FSWed dissimilar joints of AA6061Al alloy and AZ31B Mg alloy.Potentiodynamic polarization testwas conducted by varying chloride ion concentration,pH value of the NaCl solution and exposure time.The corroded surfaces wereanalyzed using optical microscopy,scanning electron microscopy and XRD techniques.Of these three factors investigated,exposuretime is found to be the most significant factor to influence the corrosion behaviour of SZ of friction stir welded dissimilar joints ofAl/Mg alloys.
基金Projects(51405389,51675435)supported by the National Natural Science Foundation of ChinaProject(3102017ZY005)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SAST2016043)supported by the Fund of SAST,ChinaProject(20161125002)supported by the Aeronautical Science Foundation of ChinaProject(B08040)supported by the 111 Project,ChinaProjects(2016YFB0701203,2016YFB1100104)supported by the National Key Research and Development Program of China
文摘The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.
基金the support extended by the Centre for Materials Joining & Research (CEMJOR)
文摘The fusion welding of dissimilar heat treatable and non-heat treatable aluminium alloy faced many problems related to solidification. The difficulties can be overcome to achieve the combined beneficial properties of both aluminium alloys using friction stir welding(FSW). The microstructural features and tensile properties of friction stir welded(FSW) similar and dissimilar joints made of AA6061 and AA5086 aluminium alloys were investigated. The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscopy. Microhardness was measured at various zones of the welded joints. The tensile properties of the joints were evaluated and correlated with the microstructural features and microhardness values. The dissimilar joint exhibits a maximum hardness of HV 115 and a joint efficiency of 56%. This was attributed to the defect free stir zone formation and grain size strengthening.
基金the support extended by the Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India to carry out this research
文摘Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.
文摘Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.
文摘It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium-titanium dissimilar joint using tensile testing coupled with digital image correlation,optical and scanning electron microscopy,x-ray diffraction and microhardness measurements.Microstructurally different regions such as contact zone,dynamic recrystallized zone,thermo-mechanically affected zone,and partially deformed zone in the magnesium side were observed.No discernible regions were observed in the titanium side,as it had not undergone any significant plastic deformation.Phase analysis indicated that the aluminium from the magnesium side diffused toward the weld interface and formed a thin continuous intermetallic layer by reacting with the titanium.Microhardness mapping showed a steep hardness gradient from the titanium to magnesium side.Critical analysis is done on the tensile characteristics of the specimen and the response of the local regions to the deformation process is mapped.
文摘Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.
文摘Butt friction stir welding between pure copper and AA5754 alloy was carried out.Reinforcing SiC nanoparticles were utilized in friction stir welded(FSW)joints to decline the harmful effects of intermetallic compounds.Tensile tests,micro-hardness experiments,scanning electron microscopy and X-ray diffraction analysis were applied to studying the properties of welded joints.The joints with a travel speed of 50 mm/min and a rotation speed of 1000 r/min showed the best results.The presence of nano-sized SiC particles reduced the grain size of aluminum and copper in the stir zone(SZ)from 38.3 and 12.4μm to 12.9 and 5.1μm,respectively.The tensile strength of the joint in the presence of reinforcing SiC nano-particles was~240 MPa,which is~90%of that for the aluminum base.Furthermore,the highest microhardness of the weld zone was significantly increased from HV 160 to HV 320 upon the addition of SiC nano-particles.The results also showed that raising the heat generation in FSW joints increased the amount of Al_(4)Cu_(9) and Al_(2)Cu intermetallic compounds.
文摘Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.
基金funding support provided by the Board of Research in Fusion Science and Technology(BRFST)Gandhinagar and Office of Research and Sponsored Projects(ORSP)Pandit Deendayal Petroleum University(PDPU),Gandhinagar under projects of NFP/MAT/A 10/04 and ORSP/R&D/SRP/2014/RDKM respectively
文摘Dissimilar friction stir welding (FSW) of copper and aluminum was investigated by nine different tool designs, while the rest of the process parameters were kept constant. Mechanical and metallurgical tests such as macrostructure, microstructure, tensile test, hardness, scanning electron microscope and electron X-ray spectrographs were performed to assess the properties of dissimilar joints. The results exhibited that, the maximum joint strength was achieved by the tool of cylindrical pin profile having 8 mm pin diameter. Besides, the fragmental defects increased as the number of polygonal edges decreased, hence the polygonal pin profiles were unsuitable for dissimilar FSW butt joints. Furthermore, the tensile strength increased as the number of polygonal edges increased. Stir zone of polygonal pin profiles was hard and brittle relative to cylindrical tool pin profiles for same shoulder surface. Maximum hardness of HV 283 was obtained at weld made by the polygonal square pin profile. The hard and brittle intermetallic compounds (IMCs) were prominently presented in the stir zone. Phases of IMCs such as CuAl, CuAl2, Cu3Al and Cu9Al4 were presented in the stir zone of dissimilar Cu-Al joints.
基金This work was supported by International Science and Technology Cooperation Project of Guangdong Province(Grant No.2022A0505050054)Innovation and Technology Fund(ITF)(Grant No.ITP/021/19AP)National Natural Science Foundation of China(Grant No.51905112).
文摘Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics,including high shear strength,long fatigue life,and strong corrosion resistance.In the meanwhile,as the key-hole free joint has different microstructures compared with conventional friction stir spot welding,thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms,which needs further investigation.To explore the underlying failure mechanism,the similar/dissimilar metallic material joining parameters and pre-treatment,mechanical properties,as well as fracture mechanisms under this novel technology will be discussed.In details,the welding tool design,welding parameters setting,and the influence of processing on the lap shear and fatigue properties,as well as the corrosion resistance will be mainly discussed.Moreover,the roadmap of RFFSW is also discussed.
文摘For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials evaluated to be difficult for friction welding and non-round shape joints. In this process, after the intermediate material generates the independent friction heat on every side of the specimens, it is removed instantaneously and upset process begins to weld the specimens for a joint. In this study, similar joint of A2017 aluminum alloy and one of S45C steel were examined. On the other hand, thermal elastic-plastic stress analysis by the finite element method was carried out using ANSYS mechanical.
文摘The welding of dissimilar materials is one of the challenging issues in the fabrication industry to obtain required quality welds using fusion welding methods.However,some processes recently improved interface bonding with low joint strength.Unfortunately,the major intermetallic compounds could not alleviate from the joint interface.Alternatively,solid-state welding methods revealed fewer intermetallics at the joint interface for dissimilar material welds.Among them,friction welding was chosen to join incompatible materials with the necessary properties successfully.Friction time is a critical parameter for obtaining strong welds through friction welding,apart from friction pressure,forging pressure,forging time,and rotational speed.Variability of friction time can change the strength of friction by changing mechanical properties such as tensile strength.This change of tensile strength is typically influenced by the intermixing region,dependent on friction time.In this experiment,carbon steel and stainless steel have been friction welded to test the impact of friction time on the joint interface where the substrate’s faying surface meets.This interface consists of the intermixing region of the two materials on which the friction welding is performed.The results showed an interesting variation in tensile strength,with varying friction time.The width of the intermixing zone increased gradually with friction time until and decreased with the further increasing.The strength of the welds obtained was the highest of 730 MPa at a friction time of 4 s and fell as friction time’s increased value after 4 s.