In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the ...In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.展开更多
We propose an inexact Newton method with a filter line search algorithm for nonconvex equality constrained optimization. Inexact Newton's methods are needed for large-scale applications which the iteration matrix can...We propose an inexact Newton method with a filter line search algorithm for nonconvex equality constrained optimization. Inexact Newton's methods are needed for large-scale applications which the iteration matrix cannot be explicitly formed or factored. We incorporate inexact Newton strategies in filter line search, yielding algorithm that can ensure global convergence. An analysis of the global behavior of the algorithm and numerical results on a collection of test problems are presented.展开更多
文摘In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11371253Natural Science Foundation of Hunan Province under Grant No.2016JJ2038the project of Scientific Research Fund of Hunan Provincial Education Department under Grant No.14B044
文摘We propose an inexact Newton method with a filter line search algorithm for nonconvex equality constrained optimization. Inexact Newton's methods are needed for large-scale applications which the iteration matrix cannot be explicitly formed or factored. We incorporate inexact Newton strategies in filter line search, yielding algorithm that can ensure global convergence. An analysis of the global behavior of the algorithm and numerical results on a collection of test problems are presented.
基金The author gratefully acknowledges the partial supports of the Ph.D.Foundation Grant(0527003)of Chinese Education Ministry and the Science Foundation Grant (06DZ037,05DZ11) of Shanghai Education Committee.