For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bron...For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.展开更多
Avian infectious bronchitis virus (AIBV) is classified as a member of the genus coronavirus in the family coronaviridae. The enveloped virus has a positive-sense, sin-gle-stranded RNA genome of approximately 28 kilo-b...Avian infectious bronchitis virus (AIBV) is classified as a member of the genus coronavirus in the family coronaviridae. The enveloped virus has a positive-sense, sin-gle-stranded RNA genome of approximately 28 kilo-bases, which has a 5′ cap structure and 3′ polyadenylation tract. The complete genome sequence of infectious bronchitis virus (IBV), Beijing isolate, was determined by cloning sequencing and primer walking. The whole genome is 27733 nucleotides in length, has ten open reading frames: 5′-orf1a-orf1ab-s-3a- 3b-e-m- 6a-6b-n-3′. Alignments of the genome sequence of IBV Beijing isolate with those of two AIBV strains and one SARS coronavirus were performed respectively. The genome sequence of IBV Beijing isolate compared with that of the IBV strain LX4 (uncompleted, 19440 bp in size) was 91.2% similarity. However, the full-length genome sequence of IBV Beijing isolate was 85.2% identity to that of IBV Strain Beaudette, and was only 50.8% homology to that of SARS coronavirus. The results showed that the genome of IBV has remarkable variation. And IBV Beijing isolate is not closely related to SARS coronavirus. Phylogenetic analyses based on the whole genome sequence, S protein, M protein and N pro-tein, also showed that AIBV Beijing isolate is lone virus in group Ⅲ and is distant from SARS coronavirus. In conclu-sion, this study will contribute to the studies of diagnosis and diseases control on IBV in China.展开更多
The emergence of new pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Ebola virus, poses serious challenges to global public...The emergence of new pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Ebola virus, poses serious challenges to global public health and highlights the urgent need for novel antiviral approaches. Monoclonal antibodies (mAbs) have been successfully used to treat various diseases, particularly cancer and immunological disorders. Antigen-specific mAbs have been isolated using several different approaches, including hybridoma, transgenic mice, phage display, yeast display, and single B-celi isolation. Consequently, an increasing number of mAbs, which exhibit high potency against emerging viruses in vitro and in animal models of infection, have been developed. In this paper, we summarize historical trends and recent developments in mAb discovery, compare the advantages and disadvantages of various approaches to mAb production, and discuss the potential use of such strategies for the development of antivirals against emerging diseases. We also review the application of recently developed human mAbs against SARS-CoV, MERS-CoV, and Ebola virus and discuss prospects for the development of mAbs as therapeutic agents against emerging viral diseases.展开更多
文摘For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.
文摘Avian infectious bronchitis virus (AIBV) is classified as a member of the genus coronavirus in the family coronaviridae. The enveloped virus has a positive-sense, sin-gle-stranded RNA genome of approximately 28 kilo-bases, which has a 5′ cap structure and 3′ polyadenylation tract. The complete genome sequence of infectious bronchitis virus (IBV), Beijing isolate, was determined by cloning sequencing and primer walking. The whole genome is 27733 nucleotides in length, has ten open reading frames: 5′-orf1a-orf1ab-s-3a- 3b-e-m- 6a-6b-n-3′. Alignments of the genome sequence of IBV Beijing isolate with those of two AIBV strains and one SARS coronavirus were performed respectively. The genome sequence of IBV Beijing isolate compared with that of the IBV strain LX4 (uncompleted, 19440 bp in size) was 91.2% similarity. However, the full-length genome sequence of IBV Beijing isolate was 85.2% identity to that of IBV Strain Beaudette, and was only 50.8% homology to that of SARS coronavirus. The results showed that the genome of IBV has remarkable variation. And IBV Beijing isolate is not closely related to SARS coronavirus. Phylogenetic analyses based on the whole genome sequence, S protein, M protein and N pro-tein, also showed that AIBV Beijing isolate is lone virus in group Ⅲ and is distant from SARS coronavirus. In conclu-sion, this study will contribute to the studies of diagnosis and diseases control on IBV in China.
文摘The emergence of new pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Ebola virus, poses serious challenges to global public health and highlights the urgent need for novel antiviral approaches. Monoclonal antibodies (mAbs) have been successfully used to treat various diseases, particularly cancer and immunological disorders. Antigen-specific mAbs have been isolated using several different approaches, including hybridoma, transgenic mice, phage display, yeast display, and single B-celi isolation. Consequently, an increasing number of mAbs, which exhibit high potency against emerging viruses in vitro and in animal models of infection, have been developed. In this paper, we summarize historical trends and recent developments in mAb discovery, compare the advantages and disadvantages of various approaches to mAb production, and discuss the potential use of such strategies for the development of antivirals against emerging diseases. We also review the application of recently developed human mAbs against SARS-CoV, MERS-CoV, and Ebola virus and discuss prospects for the development of mAbs as therapeutic agents against emerging viral diseases.