A new method for determining two key parameters(threshold pressure and permeability)for fabricating metal matrix composites was proposed based on the equation-solving method.An infiltration experimental device was dev...A new method for determining two key parameters(threshold pressure and permeability)for fabricating metal matrix composites was proposed based on the equation-solving method.An infiltration experimental device was devised to measure the infiltration behavior precisely with controllable infiltration velocity.Two experiments with alloy Pb-Sn infiltrating into Al2O3 preform were conducted independently under two different pressures so as to get two different infiltration curves.Two sets of coefficients which are functions of threshold pressure and permeability can be obtained through curve fitting method.By solving the two-variable equation set,two unknown variables were determined.It is shown that the determined threshold pressure and permeability are very close to the calculated ones and are also verified by another independent infiltration experiment.The proposed method is also feasible to determine the key infiltration parameters for other metal matrix composite systems.展开更多
ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.T...ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management.展开更多
The fabrication of near-net-shaped objects of RE123 superconductors by 'infiltration processing' is discussed. Near-net-shape processing involves the infiltration of preshaped porous green bodies of either 211...The fabrication of near-net-shaped objects of RE123 superconductors by 'infiltration processing' is discussed. Near-net-shape processing involves the infiltration of preshaped porous green bodies of either 211 or yttria phases by liquids containing barium cuprates and copper oxides followed by a controlled peritectic solidification. The process yields poly- and also single-crystalline superconducting objects with a shrinkage of less than half of one percent of the green bodies. The preservation of the initial structure of the green bodies results in fabrication of RE 123 in a wide variety of dimensions and complex shapes. The demonstrated products include bulk components like cylinders, single domain thick films on a variety of substrates, freestanding fabrics and open porous superconducting foams. This paper presents a comprehensive description of the infiltration processing technique and the resulting microstructures of the superconducting bodies. The advantages of this technique and practical applications of the processed superconducting structures are highlighted.展开更多
he Al_2O_3 particle reinforced aluminum matrix composite was prepared by using a new pressureless infiltration process. The microstructure of (Al_2O_3)p/Al was analyzed. The tension and the thermal conductivity of the...he Al_2O_3 particle reinforced aluminum matrix composite was prepared by using a new pressureless infiltration process. The microstructure of (Al_2O_3)p/Al was analyzed. The tension and the thermal conductivity of the composite were studied as well.展开更多
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
Environmental barrier coatings(EBCs)effectively protect the ceramic matrix composites(CMCs)from harsh engine environments,especially steam and molten salts.However,open pores inevitably formed during the deposition pr...Environmental barrier coatings(EBCs)effectively protect the ceramic matrix composites(CMCs)from harsh engine environments,especially steam and molten salts.However,open pores inevitably formed during the deposition process provide the transport channels for oxidants and corrosives,and lead to premature failure of EBCs.This research work proposed a method of pressure infiltration densification which blocked these open pores in the coatings.These results showed that it was difficult for aluminum to infiltrate spontaneously,but with the increase of external gas pressure and internal vacuum simultaneously,the molten aluminum obviously moved forward,and finally stopped infiltrating at a depth of a specific geometry.Based on the wrinkled zigzag pore model,a mathematical relationship between the critical pressure with the infiltration depth and the pore intrinsic geometry was established.The infiltration results confirmed this relationship,indicating that for a given coating,a dense thick film can be obtained by adjusting the internal and external gas pressures to drive a melt infiltration.展开更多
基金Project(51575447) supported by the National Natural Science Foundation of ChinaProject supported by Top University around World Visiting Plan for Young Teacher’s Cultivating in NWPU,China
文摘A new method for determining two key parameters(threshold pressure and permeability)for fabricating metal matrix composites was proposed based on the equation-solving method.An infiltration experimental device was devised to measure the infiltration behavior precisely with controllable infiltration velocity.Two experiments with alloy Pb-Sn infiltrating into Al2O3 preform were conducted independently under two different pressures so as to get two different infiltration curves.Two sets of coefficients which are functions of threshold pressure and permeability can be obtained through curve fitting method.By solving the two-variable equation set,two unknown variables were determined.It is shown that the determined threshold pressure and permeability are very close to the calculated ones and are also verified by another independent infiltration experiment.The proposed method is also feasible to determine the key infiltration parameters for other metal matrix composite systems.
基金funded by the National Natural Science Foundation of China(Grant No.42071047 and 41771035)the Basic Research Innovation Group Project of Gansu Province(Grant No.22JR5RA129).
文摘ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management.
基金German Federal Ministry of Higher Education and Research(BMBF)(No.13N1571/l)
文摘The fabrication of near-net-shaped objects of RE123 superconductors by 'infiltration processing' is discussed. Near-net-shape processing involves the infiltration of preshaped porous green bodies of either 211 or yttria phases by liquids containing barium cuprates and copper oxides followed by a controlled peritectic solidification. The process yields poly- and also single-crystalline superconducting objects with a shrinkage of less than half of one percent of the green bodies. The preservation of the initial structure of the green bodies results in fabrication of RE 123 in a wide variety of dimensions and complex shapes. The demonstrated products include bulk components like cylinders, single domain thick films on a variety of substrates, freestanding fabrics and open porous superconducting foams. This paper presents a comprehensive description of the infiltration processing technique and the resulting microstructures of the superconducting bodies. The advantages of this technique and practical applications of the processed superconducting structures are highlighted.
文摘he Al_2O_3 particle reinforced aluminum matrix composite was prepared by using a new pressureless infiltration process. The microstructure of (Al_2O_3)p/Al was analyzed. The tension and the thermal conductivity of the composite were studied as well.
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
基金supported by the National Natural Science Foundation of China(No.51901175)the Guangdong Province Outstanding Youth Foundation(No.2021B1515020038)+3 种基金the Guangzhou Technical Research Program(No.201906010015)the Industry University Research Project funded by Aero Engine Corporation of China(No.HFZL2019CXY015)the Postdoctoral Research Foundation of China(Nos.2020T130499 and 2019M653602)the National Program for Support of Top-notch Young Professionals.
文摘Environmental barrier coatings(EBCs)effectively protect the ceramic matrix composites(CMCs)from harsh engine environments,especially steam and molten salts.However,open pores inevitably formed during the deposition process provide the transport channels for oxidants and corrosives,and lead to premature failure of EBCs.This research work proposed a method of pressure infiltration densification which blocked these open pores in the coatings.These results showed that it was difficult for aluminum to infiltrate spontaneously,but with the increase of external gas pressure and internal vacuum simultaneously,the molten aluminum obviously moved forward,and finally stopped infiltrating at a depth of a specific geometry.Based on the wrinkled zigzag pore model,a mathematical relationship between the critical pressure with the infiltration depth and the pore intrinsic geometry was established.The infiltration results confirmed this relationship,indicating that for a given coating,a dense thick film can be obtained by adjusting the internal and external gas pressures to drive a melt infiltration.