A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic...A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic model and the continuously stratified baroclinic model. Since this system can simulate the baroclinic effect simply, it is widely used to study the large-scale dynamic process in atmosphere and ocean. The present paper is concerned with the linear stability of the multilayer quasi-geostrophic flow, and the associated linear stability criteria are established. Firstly, the nonlinear model is turned into the form of a Hamiltonian system, and a basic flow is defined. But it cannot be an extreme point of the Hamiltonian function since the system is an infinite-dimensional one. Therefore, it is necessary to reconstruct a new Hamiltonian function so that the basic flow becomes an extreme point of it. Secondly, the linearized equations of disturbances in the multilayer quasi-geostrophic flow are derived by introducing infinitesimal disturbances superposed on the basic flows. Finally, the properties of the linearized system are discussed, and the linear stability criteria in the sense of Liapunov are derived under two different conditions with respect to certain norms.展开更多
Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient con...Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient condition of canonical factorization of operator, and provides a kind of mechanical algebraic method to achieve canonical 'σ/σx'-type expression, correspondingly. Then three examples are given, which show the application of the obtained algorithm. Thus a novel idea for inverse problem can be derived feasibly.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41575026,41275113,and 41475021)
文摘A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic model and the continuously stratified baroclinic model. Since this system can simulate the baroclinic effect simply, it is widely used to study the large-scale dynamic process in atmosphere and ocean. The present paper is concerned with the linear stability of the multilayer quasi-geostrophic flow, and the associated linear stability criteria are established. Firstly, the nonlinear model is turned into the form of a Hamiltonian system, and a basic flow is defined. But it cannot be an extreme point of the Hamiltonian function since the system is an infinite-dimensional one. Therefore, it is necessary to reconstruct a new Hamiltonian function so that the basic flow becomes an extreme point of it. Secondly, the linearized equations of disturbances in the multilayer quasi-geostrophic flow are derived by introducing infinitesimal disturbances superposed on the basic flows. Finally, the properties of the linearized system are discussed, and the linear stability criteria in the sense of Liapunov are derived under two different conditions with respect to certain norms.
基金Project supported by the National Natural Science Foundation of China (Grant No 10562002) and the Natural Science Foundation of Nei Mongol, China (Grant No 200508010103).
文摘Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient condition of canonical factorization of operator, and provides a kind of mechanical algebraic method to achieve canonical 'σ/σx'-type expression, correspondingly. Then three examples are given, which show the application of the obtained algorithm. Thus a novel idea for inverse problem can be derived feasibly.