A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic...A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic model and the continuously stratified baroclinic model. Since this system can simulate the baroclinic effect simply, it is widely used to study the large-scale dynamic process in atmosphere and ocean. The present paper is concerned with the linear stability of the multilayer quasi-geostrophic flow, and the associated linear stability criteria are established. Firstly, the nonlinear model is turned into the form of a Hamiltonian system, and a basic flow is defined. But it cannot be an extreme point of the Hamiltonian function since the system is an infinite-dimensional one. Therefore, it is necessary to reconstruct a new Hamiltonian function so that the basic flow becomes an extreme point of it. Secondly, the linearized equations of disturbances in the multilayer quasi-geostrophic flow are derived by introducing infinitesimal disturbances superposed on the basic flows. Finally, the properties of the linearized system are discussed, and the linear stability criteria in the sense of Liapunov are derived under two different conditions with respect to certain norms.展开更多
This paper addresses the new algebraic test to check the aperiodic stability of two dimensional linear time invariant discrete systems. Initially, the two dimensional characteristics equations are converted into equiv...This paper addresses the new algebraic test to check the aperiodic stability of two dimensional linear time invariant discrete systems. Initially, the two dimensional characteristics equations are converted into equivalent one-dimensional equation. Further Fuller’s idea is applied on the equivalent one-dimensional characteristics equation. Then using the co-efficient of the characteristics equation, the routh table is formed to ascertain the aperiodic stability of the given two-dimensional linear discrete system. The illustrations were presented to show the applicability of the proposed technique.展开更多
This paper proposes a method to ascertain the stability of two dimensional linear time invariant discrete system within the shifted unit circle which is represented by the form of characteristic equation. Further an e...This paper proposes a method to ascertain the stability of two dimensional linear time invariant discrete system within the shifted unit circle which is represented by the form of characteristic equation. Further an equivalent single dimensional characteristic equation is formed from the two dimensional characteristic equation then the stability formulation in the left half of Z-plane, where the roots of characteristic equation f(Z) = 0 should lie within the shifted unit circle. The coefficient of the unit shifted characteristic equation is suitably arranged in the form of matrix and the inner determinants are evaluated using proposed Jury’s concept. The proposed stability technique is simple and direct. It reduces the computational cost. An illustrative example shows the applicability of the proposed scheme.展开更多
The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the ra...The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (GI/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.展开更多
The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the lin...The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the linear stability theory(LST) with the equivalent spanwise wavenumber correction(ESWC) is proposed in order to accurately predict the linear evolution of a disturbance in a kind of boundary layer flow with a vital variation in the spanwise direction. The LST with the ESWC takes not only the scale of the mean flow with the significant variation but also the wavenumber evolution of the disturbance itself. Compared with the conventional LST, the results obtained by the new method are in excellent agreement with those of the numerical simulations. The LST with the ESWC is an effective method on the prediction of the disturbance evolution in 3D boundary layers, which improves the prediction of the LST in the applications to complex 3D boundary layers greatly.展开更多
In this note a generalization of the concept of similarity called asymptotic similarity for infinite-dimensional linear systems is introduced. We show that this asymptotic similarity preserves the spectrum and the exp...In this note a generalization of the concept of similarity called asymptotic similarity for infinite-dimensional linear systems is introduced. We show that this asymptotic similarity preserves the spectrum and the exponential growth bound.展开更多
In this paper,the k major cone and strict k major cone in real infinite dimensional linear space are introduced,through which the k major order is defined,and their properties are also discussed.Therefore,with the ...In this paper,the k major cone and strict k major cone in real infinite dimensional linear space are introduced,through which the k major order is defined,and their properties are also discussed.Therefore,with the help of them any two elements in real infinite dimensional linear space can be compared.展开更多
It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, es...It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D- LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.展开更多
In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site pot...In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41575026,41275113,and 41475021)
文摘A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic model and the continuously stratified baroclinic model. Since this system can simulate the baroclinic effect simply, it is widely used to study the large-scale dynamic process in atmosphere and ocean. The present paper is concerned with the linear stability of the multilayer quasi-geostrophic flow, and the associated linear stability criteria are established. Firstly, the nonlinear model is turned into the form of a Hamiltonian system, and a basic flow is defined. But it cannot be an extreme point of the Hamiltonian function since the system is an infinite-dimensional one. Therefore, it is necessary to reconstruct a new Hamiltonian function so that the basic flow becomes an extreme point of it. Secondly, the linearized equations of disturbances in the multilayer quasi-geostrophic flow are derived by introducing infinitesimal disturbances superposed on the basic flows. Finally, the properties of the linearized system are discussed, and the linear stability criteria in the sense of Liapunov are derived under two different conditions with respect to certain norms.
文摘This paper addresses the new algebraic test to check the aperiodic stability of two dimensional linear time invariant discrete systems. Initially, the two dimensional characteristics equations are converted into equivalent one-dimensional equation. Further Fuller’s idea is applied on the equivalent one-dimensional characteristics equation. Then using the co-efficient of the characteristics equation, the routh table is formed to ascertain the aperiodic stability of the given two-dimensional linear discrete system. The illustrations were presented to show the applicability of the proposed technique.
文摘This paper proposes a method to ascertain the stability of two dimensional linear time invariant discrete system within the shifted unit circle which is represented by the form of characteristic equation. Further an equivalent single dimensional characteristic equation is formed from the two dimensional characteristic equation then the stability formulation in the left half of Z-plane, where the roots of characteristic equation f(Z) = 0 should lie within the shifted unit circle. The coefficient of the unit shifted characteristic equation is suitably arranged in the form of matrix and the inner determinants are evaluated using proposed Jury’s concept. The proposed stability technique is simple and direct. It reduces the computational cost. An illustrative example shows the applicability of the proposed scheme.
基金Project supported by the Basic Science and the Front Technology Research Foundation of Henan Province,China(Grant Nos.092300410179 and122102210427)the Doctoral Scientific Research Foundation of Henan University of Science and Technology,China(Grant No.09001204)+1 种基金the Scientific Research Innovation Ability Cultivation Foundation of Henan University of Science and Technology,China(Grant No.011CX011)the Scientific Research Foundation of Henan University of Science and Technology(Grant No.2012QN011)
文摘The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (GI/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.
基金Project supported by the National Key Research and Development(R&D)Program of China(No.2016YFA0401200)the National Natural Science Foundation of China(Nos.11402167,11332007,11672204,11672205,and 11732011)
文摘The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the linear stability theory(LST) with the equivalent spanwise wavenumber correction(ESWC) is proposed in order to accurately predict the linear evolution of a disturbance in a kind of boundary layer flow with a vital variation in the spanwise direction. The LST with the ESWC takes not only the scale of the mean flow with the significant variation but also the wavenumber evolution of the disturbance itself. Compared with the conventional LST, the results obtained by the new method are in excellent agreement with those of the numerical simulations. The LST with the ESWC is an effective method on the prediction of the disturbance evolution in 3D boundary layers, which improves the prediction of the LST in the applications to complex 3D boundary layers greatly.
文摘In this note a generalization of the concept of similarity called asymptotic similarity for infinite-dimensional linear systems is introduced. We show that this asymptotic similarity preserves the spectrum and the exponential growth bound.
文摘In this paper,the k major cone and strict k major cone in real infinite dimensional linear space are introduced,through which the k major order is defined,and their properties are also discussed.Therefore,with the help of them any two elements in real infinite dimensional linear space can be compared.
基金Project supported by the National Natural Science Foundation of China(Nos.11272183,11572176,11402167,11202147,and 11332007)the National Program on Key Basic Research Project of China(No.2014CB744801)
文摘It is widely accepted that a robust and efficient method to compute the linear spatial amplified rate ought to be developed in three-dimensional (3D) boundary layers to predict the transition with the e^N method, especially when the boundary layer varies significantly in the spanwise direction. The 3D-linear parabolized stability equation (3D- LPSE) approach, a 3D extension of the two-dimensional LPSE (2D-LPSE), is developed with a plane-marching procedure for investigating the instability of a 3D boundary layer with a significant spanwise variation. The method is suitable for a full Mach number region, and is validated by computing the unstable modes in 2D and 3D boundary layers, in both global and local instability problems. The predictions are in better agreement with the ones of the direct numerical simulation (DNS) rather than a 2D-eigenvalue problem (EVP) procedure. These results suggest that the plane-marching 3D-LPSE approach is a robust, efficient, and accurate choice for the local and global instability analysis in 2D and 3D boundary layers for all free-stream Mach numbers.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574011)the Foundation for Researching Group by Beijing Normal University
文摘In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.