Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending ...Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.展开更多
We consider the asymptotic behavior of solutions of an infinite lattice dynamical system of dissipative Zakharov equation. By introducing new weight inner product and norm in the space and establishing uniform estimat...We consider the asymptotic behavior of solutions of an infinite lattice dynamical system of dissipative Zakharov equation. By introducing new weight inner product and norm in the space and establishing uniform estimate on "Tail End" of solutions, we overcome some difficulties caused by the lack of Sobolev compact embedding under infinite lattice system, and prove the existence of the global attractor; then by using element decomposition and the covering property of a polyhedron in the finite-dimensional space, we obtain an upper bound for the Kolmogorov ε-entropy of the global attractor; finally, we present the upper semicontinuity of the global attractor.展开更多
文摘Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.
基金supported by National Natural Science Foundation of People's Republic of China (10771139)Partly supported by A Project Supported by Scientific Research Fund of Hu'nan Provincial Education on Department (08A070 08A071)
文摘We consider the asymptotic behavior of solutions of an infinite lattice dynamical system of dissipative Zakharov equation. By introducing new weight inner product and norm in the space and establishing uniform estimate on "Tail End" of solutions, we overcome some difficulties caused by the lack of Sobolev compact embedding under infinite lattice system, and prove the existence of the global attractor; then by using element decomposition and the covering property of a polyhedron in the finite-dimensional space, we obtain an upper bound for the Kolmogorov ε-entropy of the global attractor; finally, we present the upper semicontinuity of the global attractor.