In this article, we will present a particularly remarkable partitioning method of any infinite set with the aid of <em>non-surjective injective</em> maps. The non-surjective injective maps from an infinite...In this article, we will present a particularly remarkable partitioning method of any infinite set with the aid of <em>non-surjective injective</em> maps. The non-surjective injective maps from an infinite set to itself constitute a semigroup for the <em>law of composition</em> bundled with certain properties allowing us to prove the existence of remarkable elements. Not to mention a compatible equivalence relation that allows transferring the <em>said law</em> to the quotient set, which can be provided with a lattice structure. Finally, we will present the concept of <em>Co-injectivity</em> and some of its properties.展开更多
Let A be a ring.In this paper we generalize some results introduced by Aliabad and Mohamadian.We give a relation bet ween the z-ideals of A and t hose of the formal power series rings in an infinite set of indetermiii...Let A be a ring.In this paper we generalize some results introduced by Aliabad and Mohamadian.We give a relation bet ween the z-ideals of A and t hose of the formal power series rings in an infinite set of indetermiiiates over A.Consider A[[Xa]]3 and its subrings A[[X_(A)]]_(1),A[[X_(A)]]_(2),and A[[X_(A)]]_(α),where a is an infinite cardinal number.In fact,a z-ideal of the rings defined above is of the form I+(X_(A))i,where i=1,2,3 or an infinite cardinal number and I is a z-ideal of A.In addition,we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients.As a natural result,we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.展开更多
Most of results of Bestvina and Mogilski [Characterizing certain incomplete infinite-di- mensional absolute retracts. Michigan Math. J., 33, 291-313 (1986)] on strong Z-sets in ANR's and absorbing sets is generaliz...Most of results of Bestvina and Mogilski [Characterizing certain incomplete infinite-di- mensional absolute retracts. Michigan Math. J., 33, 291-313 (1986)] on strong Z-sets in ANR's and absorbing sets is generalized to nonseparable case. It is shown that if an ANR X is locally homotopy dense embeddable in infinite-dimensional Hilbert manifolds and w(U) ---- w(X) (where "w"is the topological weight) for each open nonempty subset U of X, then X itself i,~ homotopy dense embeddable in a Hilbert manifold. It is also demonstrated that whenever X is an AR, its weak product W(X, *) ---- {(xn)=l C X : x~ = * for almost all n} is homeomorphic to a pre-Hilbert space E with E EE. An intrinsic characterization of manifolds modelled on such pre-Hilbert spaces is given.展开更多
文摘In this article, we will present a particularly remarkable partitioning method of any infinite set with the aid of <em>non-surjective injective</em> maps. The non-surjective injective maps from an infinite set to itself constitute a semigroup for the <em>law of composition</em> bundled with certain properties allowing us to prove the existence of remarkable elements. Not to mention a compatible equivalence relation that allows transferring the <em>said law</em> to the quotient set, which can be provided with a lattice structure. Finally, we will present the concept of <em>Co-injectivity</em> and some of its properties.
文摘Let A be a ring.In this paper we generalize some results introduced by Aliabad and Mohamadian.We give a relation bet ween the z-ideals of A and t hose of the formal power series rings in an infinite set of indetermiiiates over A.Consider A[[Xa]]3 and its subrings A[[X_(A)]]_(1),A[[X_(A)]]_(2),and A[[X_(A)]]_(α),where a is an infinite cardinal number.In fact,a z-ideal of the rings defined above is of the form I+(X_(A))i,where i=1,2,3 or an infinite cardinal number and I is a z-ideal of A.In addition,we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients.As a natural result,we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.
文摘Most of results of Bestvina and Mogilski [Characterizing certain incomplete infinite-di- mensional absolute retracts. Michigan Math. J., 33, 291-313 (1986)] on strong Z-sets in ANR's and absorbing sets is generalized to nonseparable case. It is shown that if an ANR X is locally homotopy dense embeddable in infinite-dimensional Hilbert manifolds and w(U) ---- w(X) (where "w"is the topological weight) for each open nonempty subset U of X, then X itself i,~ homotopy dense embeddable in a Hilbert manifold. It is also demonstrated that whenever X is an AR, its weak product W(X, *) ---- {(xn)=l C X : x~ = * for almost all n} is homeomorphic to a pre-Hilbert space E with E EE. An intrinsic characterization of manifolds modelled on such pre-Hilbert spaces is given.