期刊文献+
共找到234篇文章
< 1 2 12 >
每页显示 20 50 100
Invertibility of Infinite-Dimensional Hamiltonian Operators and Its Application to Plate Bending Equation 被引量:2
1
作者 Alatancang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第3期562-566,共5页
The results of invertibility and spectrum for some different classes of infinite-dimensional Hayniltonian operators, after a brief classification by domains. are given. By the above results, the associated infinite-di... The results of invertibility and spectrum for some different classes of infinite-dimensional Hayniltonian operators, after a brief classification by domains. are given. By the above results, the associated infinite-dimensional Hamiltonian operator with simple supported rectangular plate is proved to be invertible. Furthermore, by a certain compactness, we find that the spectrum of this operator consists only of isolated eigenvalues with finite geometric multiplicity, which will play a significant role in finding the analytical and numerical solution based on Hamiltonian system for a class of plate bending equations. 展开更多
关键词 vplate bending equation INVERTIBILITY infinite-dimensional hamiltonian operator
下载PDF
Spectral Description of a Class of Infinite-Dimensional Hamiltonian Operators and Its Application to Plane Elasticity Equations Without Body Force
2
作者 Alatancang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期983-986,共4页
In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dime... In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dimensionalHamiltonian operator associated with plane elasticity equations without the body force is invertible,and the spectrumof which is non-empty and is a subset of R. 展开更多
关键词 plane elasticity equations infinite-dimensional hamiltonian operator SPECTRUM
下载PDF
Completeness of Eigenfunction Systems for Off-Diagonal Infinite-Dimensional Hamiltonian Operators 被引量:15
3
作者 侯国林 阿拉坦仓 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第2期237-241,共5页
For the off-diagonal infinite dimensional Hamiltonian operators, which have at most countable eigenvalues, a necessary and sufficient condition of the eigenfunction systems to be complete in the sense of Cauchy princi... For the off-diagonal infinite dimensional Hamiltonian operators, which have at most countable eigenvalues, a necessary and sufficient condition of the eigenfunction systems to be complete in the sense of Cauchy principal value is presented by using the spectral symmetry and new orthogonal relationship of the operators. Moreover, the above result is extended to a more general case. At last, the completeness of eigenfunction systems for the operators arising from the isotropic plane magnetoelectroelastic solids is described to illustrate the effectiveness of the criterion. The whole results offer theoretical guarantee for separation of variables in Hamiltonian system for some mechanics equations. 展开更多
关键词 hamiltonian system infinite dimensional hamiltonian operator COMPLETENESS Cauchy principalvalue magnetoelectroelastic solid
下载PDF
Spectra of Off-diagonal Infinite-Dimensional Hamiltonian Operators and Their Applications to Plane Elasticity Problems 被引量:13
4
作者 Alatancang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第2期200-204,共5页
In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residu... In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results. 展开更多
关键词 plane elasticity problem SPECTRUM hamiltonian operator uncoupled
下载PDF
Completeness of the System of Root Vectors of 2×2 Upper Triangular Infinite-Dimensional Hamiltonian Operators in Symplectic Spaces and Applications 被引量:4
5
作者 ALATANCANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第6期917-928,共12页
The authors investigate the completeness of the system of eigen or root vectors of the 2×2 upper triangular infinite-dimensional Hamiltonian operator H 0.First,the geometrical multiplicity and the algebraic index... The authors investigate the completeness of the system of eigen or root vectors of the 2×2 upper triangular infinite-dimensional Hamiltonian operator H 0.First,the geometrical multiplicity and the algebraic index of the eigenvalue of H0 are considered.Next,some necessary and sufficient conditions for the completeness of the system of eigen or root vectors of H0 are obtained.Finally,the obtained results are tested in several examples. 展开更多
关键词 2 × 2 upper triangular infinite-dimensional hamiltonian operator Eigenvector Root vector COMPLETENESS
原文传递
Completeness of system of root vectors of upper triangular infinitedimensional Hamiltonian operators appearing in elasticity theory 被引量:1
6
作者 王华 阿拉坦仓 黄俊杰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第3期385-398,共14页
This paper deals with a class of upper triangular infinite-dimensional Hamilto- nian operators appearing in the elasticity theory. The geometric multiplicity and algebraic index of the eigenvalue are investigated. Fur... This paper deals with a class of upper triangular infinite-dimensional Hamilto- nian operators appearing in the elasticity theory. The geometric multiplicity and algebraic index of the eigenvalue are investigated. Furthermore, the algebraic multiplicity of the eigenvalue is obtained. Based on these properties, the concrete completeness formulation of the system of eigenvectors or root vectors of the Hamiltonian operator is proposed. It is shown that the completeness is determined by the system of eigenvectors of the operator entries. Finally, the applications of the results to some problems in the elasticity theory are presented. 展开更多
关键词 upper triangular infinite-dimensional hamiltonian operator EIGENVECTOR root vector MULTIPLICITY COMPLETENESS
下载PDF
An algorithm and its application for obtaining some kind of infinite-dimensional Hamiltonian canonical formulation 被引量:6
7
作者 任文秀 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3154-3160,共7页
Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient con... Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient condition of canonical factorization of operator, and provides a kind of mechanical algebraic method to achieve canonical 'σ/σx'-type expression, correspondingly. Then three examples are given, which show the application of the obtained algorithm. Thus a novel idea for inverse problem can be derived feasibly. 展开更多
关键词 nonlinear evolution equation infinite-dimensional hamiltonian canonical system factorization of differential operator COMMUTATOR
下载PDF
Eigenvalue problem of a class of fourth-order Hamiltonian operators 被引量:1
8
作者 WANG Hua HUANG Jun-jie Alatancang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第1期101-115,共15页
The eigenvalue problem of a class of fourth-order Hamiltonian operators is studied. We first obtain the geometric multiplicity, the algebraic index and the algebraic multiplicity of each eigenvalue of the Hamiltonian ... The eigenvalue problem of a class of fourth-order Hamiltonian operators is studied. We first obtain the geometric multiplicity, the algebraic index and the algebraic multiplicity of each eigenvalue of the Hamiltonian operators. Then, some necessary and sufficient conditions for the completeness of the eigen or root vector system of the Hamiltonian operators are given, which is characterized by that of the vector system consisting of the first components of all eigenvectors. Moreover, the results are applied to the plate bending problem. 展开更多
关键词 hamiltonian operator EIGENVALUE MULTIPLICITY completeness.
下载PDF
On the ascent of infinite dimensional Hamiltonian operators
9
作者 吴德玉 陈阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期421-425,共5页
In this paper, the ascent of 2 × 2 infinite dimensional Hamiltonian operators and a class of 4 × 4 infinite dimensional Hamiltonian operators are studied, and the conditions under which the ascent of 2 ×... In this paper, the ascent of 2 × 2 infinite dimensional Hamiltonian operators and a class of 4 × 4 infinite dimensional Hamiltonian operators are studied, and the conditions under which the ascent of 2 × 2 infinite dimensional Hamiltonian operator is 1 and the ascent of a class of 4 × 4 infinite dimensional Hamiltonian operators that arises in study of elasticity is2 are obtained. Concrete examples are given to illustrate the effectiveness of criterions. 展开更多
关键词 root vector COMPLETENESS infinite dimensional hamiltonian operator ASCENT
下载PDF
Bosonic Operator Realization of Hamiltonian for a Superconducting QuantumInterference Device
10
作者 FANHong-Yi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第6期878-880,共3页
Based on the appropriate bosonic phase operator diagonalized in the entangled state representation we construct the Hamiltonian operator model for a superconducting quantum interference device. The current operator an... Based on the appropriate bosonic phase operator diagonalized in the entangled state representation we construct the Hamiltonian operator model for a superconducting quantum interference device. The current operator and voltage operator equations are derived. 展开更多
关键词 SQUID hamiltonian operator model current operator and voltage operator equations
下载PDF
Completeness of eigenfunction systems for the product of two symmetric operator matrices and its application in elasticity 被引量:3
11
作者 齐高娃 侯国林 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期264-272,共9页
The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified... The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified method of separation of variables is proposed for a separable Hamiltonian system. As an application of the theorem, the general solutions for the plate bending equation and the free vibration of rectangular thin plates are obtained. Finally, a numerical test is analysed to show the correctness of the results. 展开更多
关键词 operator matrix hamiltonian operator symplectic orthogonal eigenfunction system completeness
下载PDF
Block basis property of a class of 2×2 operator matrices and its application to elasticity
12
作者 宋宽 侯国林 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期474-479,共6页
A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of s... A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems. 展开更多
关键词 symplectic elasticity block Schauder basis separable hamiltonian system operator matrices
下载PDF
Boundary Value Problem for an Operator-Differential Riccati Equation in the Hilbert Space on the Interval
13
作者 O. O. Pokutnyi 《Advances in Pure Mathematics》 2015年第14期865-873,共9页
The paper is devoted to obtaining the necessary and sufficient conditions of the solvability of weakly perturbed boundary-value problems for the nonlinear operator-differential Riccati equation in the Hilbert space on... The paper is devoted to obtaining the necessary and sufficient conditions of the solvability of weakly perturbed boundary-value problems for the nonlinear operator-differential Riccati equation in the Hilbert space on the interval and whole line with parameter ?. We find the solution of the given boundary value problem which for ε = 0 turns in one of the solutions of generating boundary value problem. Solution of the generating problem is constructed with the using generalized operator in analytical form. Iterative process for finding of solutions of weakly nonlinear equation with quadratic error is constructed. 展开更多
关键词 RICCATI Equation hamiltonian System Generalized Green’s operator
下载PDF
Phase Operator and Lattice Green’s Function for Ring-Lattice Model in p-th Nearest Neighbour Interact ion Approximation
14
作者 FAN Hong-yi PAN Xiao-yin 《Chinese Physics Letters》 SCIE CAS CSCD 1998年第8期547-549,共3页
In dealing with the one-dimensional lattice model,we replace the traditionally needed Born-Von-Karmann periodic boundary condition with two additional Hamiltonian terms to make up a ring-lattice.In so doing,a unitary ... In dealing with the one-dimensional lattice model,we replace the traditionally needed Born-Von-Karmann periodic boundary condition with two additional Hamiltonian terms to make up a ring-lattice.In so doing,a unitary phase operator and the corresponding Hermite phase angle operator can be introduced as those in quantum optics theory.The new Hamiltonian is invariant under the phase shift transformation.Moreover,the lattice Green’s function in the p-th nearest interaction approximation can also be easily derived from the new Hamiltonian.which becomes the well-known lattice Green’s function when the ring is infinite. 展开更多
关键词 theory. hamiltonian operator
下载PDF
非厄密系统哈密顿量的本征值和本征态
15
作者 范迎迎 曹亲亲 孙宝玺 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期169-175,共7页
利用扭结哈密顿算子构造了非厄密哈密顿量,探讨了非厄密哈密顿量本征值和本征态的性质.结果表明:非厄密哈密顿量的能量本征值为复数,且随着模型参数和角度的变化而变化,可能会出现奇异点;通过理论推导可确定本征值奇异点的位置和个数.... 利用扭结哈密顿算子构造了非厄密哈密顿量,探讨了非厄密哈密顿量本征值和本征态的性质.结果表明:非厄密哈密顿量的能量本征值为复数,且随着模型参数和角度的变化而变化,可能会出现奇异点;通过理论推导可确定本征值奇异点的位置和个数.非厄密哈密顿量本征矢量之间的正交归一性呈现与传统量子力学完全不同的特点;考虑基尔霍夫电流定律,用电阻、电感及电容构造电路,可获得非厄密哈密顿量. 展开更多
关键词 非厄密哈密顿量 扭结哈密顿算子 奇异点 基尔霍夫电流定律 RLC电路
下载PDF
一类矩形中厚板模型屈曲与振动问题的辛解析解
16
作者 吴美慧 侯国林 《内蒙古大学学报(自然科学版)》 CAS 2024年第5期483-495,共13页
从实际力学问题出发抽象出一类矩形中厚板模型,并用辛体系方法进行求解。首先,通过适当的变换将该模型转化为Hamilton系统,得到了Hamilton算子的本征值和本征函数系,并证明了本征函数系的完备性,进而给出对边简支情形的一般解,最后对6... 从实际力学问题出发抽象出一类矩形中厚板模型,并用辛体系方法进行求解。首先,通过适当的变换将该模型转化为Hamilton系统,得到了Hamilton算子的本征值和本征函数系,并证明了本征函数系的完备性,进而给出对边简支情形的一般解,最后对6种不同边界条件下的Mindlin板和Pasternak型双参数弹性地基的矩形中厚板的振动及屈曲问题进行了数值模拟。数据对比显示了本文模型的正确性和辛方法的有效性。 展开更多
关键词 矩形中厚板 辛方法 HAMILTON算子 自由振动 屈曲载荷
下载PDF
基于近端算子PHMC的机载雷达高度表参数估计
17
作者 郭牧欣 江舸 +1 位作者 黄博 经文 《太赫兹科学与电子信息学报》 2024年第2期186-193,共8页
传统雷达高度表参数估计算法在面对参数的高维特性时会出现过拟合情况,导致参数估计精确度降低。为此,提出一种新颖的基于近端算子修正的哈密顿蒙特卡洛(PHMC)算法,通过统计学的手段估计高程参数。首先假设高程参数具有稀疏特性,并使用... 传统雷达高度表参数估计算法在面对参数的高维特性时会出现过拟合情况,导致参数估计精确度降低。为此,提出一种新颖的基于近端算子修正的哈密顿蒙特卡洛(PHMC)算法,通过统计学的手段估计高程参数。首先假设高程参数具有稀疏特性,并使用拉普拉斯分布对其进行表征,这种稀疏先验可表征高程突变的地形场景。稀疏先验与似然函数之间为非共轭关系,使用分层贝叶斯的方法获得后验分布函数的闭合解,采用哈密顿蒙特卡洛(HMC)方法通过采样的方式解决贝叶斯推论中的参数估计问题,引入近端算子提供次梯度完成参数估计。仿真数据验证了所提PHMC算法优于其他传统算法。 展开更多
关键词 雷达高度表 哈密顿蒙特卡洛方法 分层贝叶斯 近端算子
下载PDF
势函数V(r)=Z^2r^(-4)-d_1d_2r^(-3)的离子的Hamiltonian本征方程的精确解 被引量:2
18
作者 周国中 《徐州师范大学学报(自然科学版)》 CAS 2004年第1期51-54,共4页
采用连分法,得到离子之间相互作用势为V(r)=Z2r-4-d1d2r-3的离子的Hamiltonian算符的精确能量本征值和能量本征函数.
关键词 势函数 hamiltonian本征方程 精确解 连分法 离子 原子 量子化学
下载PDF
无界分块算子矩阵的可分解性及其应用
19
作者 王晓丽 阿拉坦仓 《工程数学学报》 CSCD 北大核心 2024年第3期568-576,共9页
无界分块算子矩阵广泛地出现于系统理论、非线性分析以及发展方程问题等领域,在理论和实际应用两方面都受到广泛关注。首先,利用算子局部谱理论得到无界分块算子矩阵可分解性的刻画,其次,给出算子矩阵可分解性保持对角稳定的条件,推广... 无界分块算子矩阵广泛地出现于系统理论、非线性分析以及发展方程问题等领域,在理论和实际应用两方面都受到广泛关注。首先,利用算子局部谱理论得到无界分块算子矩阵可分解性的刻画,其次,给出算子矩阵可分解性保持对角稳定的条件,推广并得到分块算子矩阵在无界情形下的一些局部谱性质。最后,作为应用考察Hamilton算子的可分解性并举例予以说明。 展开更多
关键词 可分解性 无界分块算子矩阵 局部谱性质 HAMILTON算子
下载PDF
曲面上构造三次3-连通非Hamiltonian地图的一种方法(英文)
20
作者 毛林繁 刘彦佩 《运筹学学报》 CSCD 北大核心 2001年第4期1-7,共7页
Tutte在1946年构造性证明了并非每个简单的3-凸胞腔都是Hamiltonian的后,人们又陆续提出了多种构造三次3-连通非Hamiltonian平面图的方法,但无一能用于在一般曲面上寻找三次3-连通非Hamiltonian地图.本文提出了一种新的构造方法,可在任... Tutte在1946年构造性证明了并非每个简单的3-凸胞腔都是Hamiltonian的后,人们又陆续提出了多种构造三次3-连通非Hamiltonian平面图的方法,但无一能用于在一般曲面上寻找三次3-连通非Hamiltonian地图.本文提出了一种新的构造方法,可在任一个曲面上构造出三次3-连通非Hamiltonian地图. 展开更多
关键词 嵌入 hamiltonian地图 分裂算子 曲面 3-连通图 hamiltonian平面图
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部