In this paper, we consider the infinitesimal I- and Il-isometry deformations of submanifolds immersed in a space form N of constant curvature. We obtain some results which are new even in the case of N being the Eucli...In this paper, we consider the infinitesimal I- and Il-isometry deformations of submanifolds immersed in a space form N of constant curvature. We obtain some results which are new even in the case of N being the Euclidean space. At the same time, we generalize some classical results in E-3 Go the submanifolds immersed in a space form of constant curvature.展开更多
In this paper we discuss the infinitesimal I-isometric de formations of surfaces immersed in a space with constant curvature. We obtain a sufficient condition for the de formation vector field to be zero vector field ...In this paper we discuss the infinitesimal I-isometric de formations of surfaces immersed in a space with constant curvature. We obtain a sufficient condition for the de formation vector field to be zero vector field which is generalization of the results in [1] and [2].展开更多
We give the extension formulae on almost complex manifolds and give decompositions of the extension formulae.As applications,we study(n,0)-forms,the(n,0)-Dolbeault cohomology group and(n,q)-forms on almost complex man...We give the extension formulae on almost complex manifolds and give decompositions of the extension formulae.As applications,we study(n,0)-forms,the(n,0)-Dolbeault cohomology group and(n,q)-forms on almost complex manifolds.展开更多
文摘In this paper, we consider the infinitesimal I- and Il-isometry deformations of submanifolds immersed in a space form N of constant curvature. We obtain some results which are new even in the case of N being the Euclidean space. At the same time, we generalize some classical results in E-3 Go the submanifolds immersed in a space form of constant curvature.
文摘In this paper we discuss the infinitesimal I-isometric de formations of surfaces immersed in a space with constant curvature. We obtain a sufficient condition for the de formation vector field to be zero vector field which is generalization of the results in [1] and [2].
基金supported by National Natural Science Foundation of China(Grant No.11871016)。
文摘We give the extension formulae on almost complex manifolds and give decompositions of the extension formulae.As applications,we study(n,0)-forms,the(n,0)-Dolbeault cohomology group and(n,q)-forms on almost complex manifolds.