期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural design and modal behaviors analysis of a new swept baffled inflatable wing 被引量:1
1
作者 Nuo Ma Li Liu +1 位作者 Fanmin Meng Junhui Meng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期382-398,共17页
Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of... Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of inflatable wings such as flutter are nonnegligible in flight.By designing a certain angle between the inflatable beam and the wing span,the structural dynamic and even the aeroelastic performance of the inflatable wing can be effectively improved.Based on the analysis of the mechanical and geometric characteristics of the inflatable structure,a new inflatable wing with sweep arranged inflatable beams is proposed,and the main design variables and methods are analyzed.For purpose of investigating the aeroelastic performance of the swept baffled inflatable wing,the modal behaviors by considering the wet mode are studied.In consideration of the deficiencies of the traditional wet modal analysis method,by introducing the influence on the additional stiffness of flow field,an added massstiffness method is proposed in this paper,and the advantages are verified by ground vibration experiments.On this basis,the effects of baffles sweep angle,pressure,and boundary conditions on the modal parameters and aeroelastic performance of inflatable wing are analyzed.The results show that the aeroelastic performance of the inflatable wing can be designed by changing the baffles sweep angle,which is enlightened for the aeroelastic tailoring design on inflatable wings. 展开更多
关键词 inflatable wing Structural design Wet mode Flutter analysis
下载PDF
Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines 被引量:12
2
作者 WANG Zhifei WANG Hua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期887-895,共9页
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet... The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization. 展开更多
关键词 inflatable wing orthogonal test design parameter support vector machines optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部