TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriat...TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriately as a corridor or aerial implementation with proper spacing. Hence in many previous studies, their impact was mainly evaluated in scope of average and 85th percentile speed reduction. This paper presents and appraises the efficiency of calming measures of various types used in the city of Bialystok, Poland in terms of their influence zone. The assessment is based on speed profiles derived from individual test rides conducted with test vehicle equipped with GPS (global positioning system) data logger to obtain vehicle trajectory data. Speed measurements were conducted in vicinity of most commonly installed calming measures such as speed cameras, raised pedestrian crossing, raised intersection, speed bumps and speed cushion. The results reveal great differences within analysed devices and the usefulness of speed profiles in evaluation of their effectiveness. Speed bumps, most frequently used device in practice due to their low cost installation and speed reduction effectiveness, demonstrate lowest usefulness when influence zone is considered.展开更多
Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation cha...Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation changes removal, and by using the 3-D inversion method to reflect underground density, we analyze the characteristics of Longmenshan regional dynamic crustal density at depths of 25km, 20km and 15kin. The results show that in the Wenchuan earthquake preparation process, the regional density field showed marked characteristics both in time and space distribution. From the point of time process, the density change trend in the ten years before the earthquake presents a periodic change pattern: steady phase, dramatic stage, slow reducing phase and slow increase phase. The degree of density changes is from large to small, which means that earthquake gestation has reached the final stage. From the point of space distribution, density change distribution has a tendency of "dispersion--relative concentration", this shows that before the earthquake, the entropy of the underground density field was decreased. In addition, dramatic density changes often occur in the Longmenshan fault zone and western Sichuan plateau. Also, with the increase of depth, the trend of density change is more and more obvious. Through comparative analysis, the influence of density change on gravity is much bigger than that from height change.展开更多
Background Tropical floodplain wetlands are among the most disturbed and intensively harvested ecosystems.Their sustainable management is often hindered due to the lack of comprehensive,coherent,and standardized asses...Background Tropical floodplain wetlands are among the most disturbed and intensively harvested ecosystems.Their sustainable management is often hindered due to the lack of comprehensive,coherent,and standardized assessment frameworks of wetland ecological health(WEH).In this study,a set of appropriate criteria and indicators(C&I)of WEH assessment was developed and tested on seven wetlands of River Ichhamati,eastern India.Methods Based on the pressure-state-response(PSR)approach,evaluation indicators representing ecological,socio-economic,and institutional sustainability issues of floodplain wetland systems were either selected or formulated through literature survey and stakeholder consensus.Weights of indicators were assigned by the entropy weighting method and then used in the Technique for Order of Preference by Similarity to Ideal Solution model to determine the Euclidean distances of each wetland from the positive ideal solution and negative ideal solution.Subsequently,a comprehensive wetland ecological health index(CWEHI)was constructed from these distances to portray the condition of any PSR system component in a wetland under a fivefold classification scheme,namely‘excellent health’(CWEHI≥0.81),‘good health’(0.61-0.80),‘moderate health’(0.41-0.60),‘weak health’(0.21-0.40),and‘morbid’(≤0.20).Results The developed C&I set contains 8 criteria and 38 indicators under pressure component,7 criteria and 49 indicators under state component,as well as 4 criteria and 18 indicators under response component.When applied in 2016 and 2022,it was found that the Panchita and Aromdanga wetlands were continuously in weak and morbid health status,while the Madhabpur wetland always showed an excellent or good status for all components.Health of other wetlands oscillated between moderate and morbid health across assessment years and system components.Conclusions The developed C&I set was found to be a flexible,holistic,and refined framework that could be applied elsewhere in similar assessments with minor indicator-level adjustments.The present assessment inferred that agriculture-dominated wetlands were more affected by amplified environmental pressure than fishing-dominated wetlands.Absence of persistent water flow from main river channel,wide-spread jute-retting,agriculture-induced eutrophication,proliferation of aquatic weeds were identified as the major causes of rapid ecological deterioration.展开更多
Background:This study estimated the total soil organic C(SOC)stock of the wetland influence zone of Bichitrapur mangroves in eastern India in a spatially explicit manner.Both spatial and vertical distribution of SOC d...Background:This study estimated the total soil organic C(SOC)stock of the wetland influence zone of Bichitrapur mangroves in eastern India in a spatially explicit manner.Both spatial and vertical distribution of SOC densities with respect to land use/land cover(LULC)pattern were assessed.Subsequently,some site-specific management strate-gies were forwarded towards enhancement of C sequestration potential.Methods:The changing patterns of LULC within the wetland influence zone of the site were analyzed using Landsat TM(30 m)and Pleiades-1A(2 m)imageries from 1988 to 2018.Point-specific SOC measurement was done using samples taken from four core-depth intervals(viz.D1:0–20 cm,D2:20–40 cm,D3:40–70 cm,D4:70–100 cm)at 89 locations belonging to different LULC categories.Spatial interpolation was applied on this point-based data to produce SOC density and stock models as a whole and at all core-depths.Relationships between SOC density,core-depth and present LULC were evaluated through multivariate statistical analyses.Results:The LULC transformations during last three decades suggested the gradual growth of mangrove plantations as well as agricultural and aquacultural activities.Most amount of SOC was concentrated in D1(37.17%)followed by D3(26.51%),while D4 had the lowest(10.87%).The highest mean SOC density was observed in the dense mangrove patches(248.92 Mg ha^(−1))and the lowest mean was in the Casuarina plantations(2.78 Mg ha^(−1)).Here,Spline method emerged as the best-fit interpolation technique to model SOC data(R^(2)=0.74)and estimated total SOC stock of the entire wetland influence zone as 169,569.40 Mg and the grand mean as 125.56 Mg ha^(−1).Overall,LULC was inferred as a major determinant of SOC dynamics with a statistically significant effect(p<0.001),whereas no such inference could be drawn for soil core-depth.Conclusions:The C sequestration potential of sites such as the present one could be increased with appropriate zone-wise plantation strategies,restriction on the land conversion to aquaculture and promotion of ecotourism.Peri-odic monitoring through integration of geospatial techniques and elemental analyses would be immensely beneficial in this regard.展开更多
Aims In arid communities,it has been proposed that individual plants can extend their roots beyond their canopy exploring neighbour-ing bare ground areas.This becomes relevant in systems where the vegetation is distri...Aims In arid communities,it has been proposed that individual plants can extend their roots beyond their canopy exploring neighbour-ing bare ground areas.This becomes relevant in systems where the vegetation is distributed in patches surrounded by bare soil.However,whether roots of different species may be overlapping under bare ground areas is still controversial.The factors control-ling root responses when no plants appear to be directly influ-encing the gap among patches are still unclear.The aim of our study was to detect perennial grasses responses to an N enrich-ment pulse.Methods In a semi-arid steppe(Patagonia,Argentina),we buried root traps filled with sieved soil with and without N addition,under bare soil patches.Traps were harvested after 4 and 6 months.Trap neighbour-hoods(30 cm in diameter)included at least three of the dominant tussock species.After harvests,we identified species in the traps by root traits and quantified diversity,biomass and specific relative growth rates.Important Findings Bare ground areas show simultaneous root growth of different spe-cies.Diversity of perennial grass roots was higher with N addition than without it in the first harvest(4 months),but this difference disappeared in the second harvest(6 months).Root biomass was maximal after 6 months in N addition traps.Species preferred by herbivores(Bromus pictus and Poa ligularis)showed rapid growth and responses to N addition.Differences between harvests may be an indicative that N pulses interact with rising temperatures and soil water content as growing season progress.展开更多
文摘TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriately as a corridor or aerial implementation with proper spacing. Hence in many previous studies, their impact was mainly evaluated in scope of average and 85th percentile speed reduction. This paper presents and appraises the efficiency of calming measures of various types used in the city of Bialystok, Poland in terms of their influence zone. The assessment is based on speed profiles derived from individual test rides conducted with test vehicle equipped with GPS (global positioning system) data logger to obtain vehicle trajectory data. Speed measurements were conducted in vicinity of most commonly installed calming measures such as speed cameras, raised pedestrian crossing, raised intersection, speed bumps and speed cushion. The results reveal great differences within analysed devices and the usefulness of speed profiles in evaluation of their effectiveness. Speed bumps, most frequently used device in practice due to their low cost installation and speed reduction effectiveness, demonstrate lowest usefulness when influence zone is considered.
基金funded by the National Natural Science Foundation of China(41330314)Projects of Science for Earthquake Resilience(XH15049Y)+1 种基金National Science and Technology Support Program of China(2012BAK19B02,2012BAK19B03)Special Research Foundation for Seismology(201108009)
文摘Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation changes removal, and by using the 3-D inversion method to reflect underground density, we analyze the characteristics of Longmenshan regional dynamic crustal density at depths of 25km, 20km and 15kin. The results show that in the Wenchuan earthquake preparation process, the regional density field showed marked characteristics both in time and space distribution. From the point of time process, the density change trend in the ten years before the earthquake presents a periodic change pattern: steady phase, dramatic stage, slow reducing phase and slow increase phase. The degree of density changes is from large to small, which means that earthquake gestation has reached the final stage. From the point of space distribution, density change distribution has a tendency of "dispersion--relative concentration", this shows that before the earthquake, the entropy of the underground density field was decreased. In addition, dramatic density changes often occur in the Longmenshan fault zone and western Sichuan plateau. Also, with the increase of depth, the trend of density change is more and more obvious. Through comparative analysis, the influence of density change on gravity is much bigger than that from height change.
基金supported by the University Grants Commission,India,under Minor Research Project scheme(Memo No.F.PHW-2009/15-16(ERO))to the first author.
文摘Background Tropical floodplain wetlands are among the most disturbed and intensively harvested ecosystems.Their sustainable management is often hindered due to the lack of comprehensive,coherent,and standardized assessment frameworks of wetland ecological health(WEH).In this study,a set of appropriate criteria and indicators(C&I)of WEH assessment was developed and tested on seven wetlands of River Ichhamati,eastern India.Methods Based on the pressure-state-response(PSR)approach,evaluation indicators representing ecological,socio-economic,and institutional sustainability issues of floodplain wetland systems were either selected or formulated through literature survey and stakeholder consensus.Weights of indicators were assigned by the entropy weighting method and then used in the Technique for Order of Preference by Similarity to Ideal Solution model to determine the Euclidean distances of each wetland from the positive ideal solution and negative ideal solution.Subsequently,a comprehensive wetland ecological health index(CWEHI)was constructed from these distances to portray the condition of any PSR system component in a wetland under a fivefold classification scheme,namely‘excellent health’(CWEHI≥0.81),‘good health’(0.61-0.80),‘moderate health’(0.41-0.60),‘weak health’(0.21-0.40),and‘morbid’(≤0.20).Results The developed C&I set contains 8 criteria and 38 indicators under pressure component,7 criteria and 49 indicators under state component,as well as 4 criteria and 18 indicators under response component.When applied in 2016 and 2022,it was found that the Panchita and Aromdanga wetlands were continuously in weak and morbid health status,while the Madhabpur wetland always showed an excellent or good status for all components.Health of other wetlands oscillated between moderate and morbid health across assessment years and system components.Conclusions The developed C&I set was found to be a flexible,holistic,and refined framework that could be applied elsewhere in similar assessments with minor indicator-level adjustments.The present assessment inferred that agriculture-dominated wetlands were more affected by amplified environmental pressure than fishing-dominated wetlands.Absence of persistent water flow from main river channel,wide-spread jute-retting,agriculture-induced eutrophication,proliferation of aquatic weeds were identified as the major causes of rapid ecological deterioration.
基金support received by the corresponding author from the Science and Engineering Research Board,Department of Science&Technology(DST-SERB)Government of India(SERB Sanction No.ECR/2017/003380,dated November 26,2018).
文摘Background:This study estimated the total soil organic C(SOC)stock of the wetland influence zone of Bichitrapur mangroves in eastern India in a spatially explicit manner.Both spatial and vertical distribution of SOC densities with respect to land use/land cover(LULC)pattern were assessed.Subsequently,some site-specific management strate-gies were forwarded towards enhancement of C sequestration potential.Methods:The changing patterns of LULC within the wetland influence zone of the site were analyzed using Landsat TM(30 m)and Pleiades-1A(2 m)imageries from 1988 to 2018.Point-specific SOC measurement was done using samples taken from four core-depth intervals(viz.D1:0–20 cm,D2:20–40 cm,D3:40–70 cm,D4:70–100 cm)at 89 locations belonging to different LULC categories.Spatial interpolation was applied on this point-based data to produce SOC density and stock models as a whole and at all core-depths.Relationships between SOC density,core-depth and present LULC were evaluated through multivariate statistical analyses.Results:The LULC transformations during last three decades suggested the gradual growth of mangrove plantations as well as agricultural and aquacultural activities.Most amount of SOC was concentrated in D1(37.17%)followed by D3(26.51%),while D4 had the lowest(10.87%).The highest mean SOC density was observed in the dense mangrove patches(248.92 Mg ha^(−1))and the lowest mean was in the Casuarina plantations(2.78 Mg ha^(−1)).Here,Spline method emerged as the best-fit interpolation technique to model SOC data(R^(2)=0.74)and estimated total SOC stock of the entire wetland influence zone as 169,569.40 Mg and the grand mean as 125.56 Mg ha^(−1).Overall,LULC was inferred as a major determinant of SOC dynamics with a statistically significant effect(p<0.001),whereas no such inference could be drawn for soil core-depth.Conclusions:The C sequestration potential of sites such as the present one could be increased with appropriate zone-wise plantation strategies,restriction on the land conversion to aquaculture and promotion of ecotourism.Peri-odic monitoring through integration of geospatial techniques and elemental analyses would be immensely beneficial in this regard.
基金Funding was provided by grants from FONCyT(PICT 00462)Universidad de Buenos Aires Ciencia y Técnica(UBACyT G0032)to MR Aguiar.
文摘Aims In arid communities,it has been proposed that individual plants can extend their roots beyond their canopy exploring neighbour-ing bare ground areas.This becomes relevant in systems where the vegetation is distributed in patches surrounded by bare soil.However,whether roots of different species may be overlapping under bare ground areas is still controversial.The factors control-ling root responses when no plants appear to be directly influ-encing the gap among patches are still unclear.The aim of our study was to detect perennial grasses responses to an N enrich-ment pulse.Methods In a semi-arid steppe(Patagonia,Argentina),we buried root traps filled with sieved soil with and without N addition,under bare soil patches.Traps were harvested after 4 and 6 months.Trap neighbour-hoods(30 cm in diameter)included at least three of the dominant tussock species.After harvests,we identified species in the traps by root traits and quantified diversity,biomass and specific relative growth rates.Important Findings Bare ground areas show simultaneous root growth of different spe-cies.Diversity of perennial grass roots was higher with N addition than without it in the first harvest(4 months),but this difference disappeared in the second harvest(6 months).Root biomass was maximal after 6 months in N addition traps.Species preferred by herbivores(Bromus pictus and Poa ligularis)showed rapid growth and responses to N addition.Differences between harvests may be an indicative that N pulses interact with rising temperatures and soil water content as growing season progress.