Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in...Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.展开更多
In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mu...In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.展开更多
Objective:To investigate the effects of influenza A virus H1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purifie...Objective:To investigate the effects of influenza A virus H1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purified influenza A virus H1N1 in vitro,viral integration and replication status of the cells were detected by RT-PCR assay,cell proliferation and apoptosis was determined by MTT method and flow cytometry,respectively.Associated protein expression was delected by Western blotting.Results:Agarose gel electrophoresis showed H1N1 virus can infect astrocytes and can be copied.MTT staining showed H1N1 virus infection can inhibit the proliferation of mouse astrocytes,which makes cell viability decreased significantly.Flow cytometry showed that the proportion of Annein V staining positive vascular endothelial cells in the influenza A virus group was significantly higher than that in the control group.Western blot analysis showed after24 h and 32 h of infection,there were cells caspase-3 protein and the expression of its active form(lysed caspase-3 protein)increased.The proportion of Bax/Bcl-2 also increased.Conclusions:Influenza A virus can infect human vascular endothelial cells and proliferation and it can induce apoptosis of endothelial cells.展开更多
As the world is closely watching the current 2009 H1N1 pandemic unfold, there is a great interest and need in understanding its origin, genetic structures, virulence, and pathogenicity. The two surface proteins, hemag...As the world is closely watching the current 2009 H1N1 pandemic unfold, there is a great interest and need in understanding its origin, genetic structures, virulence, and pathogenicity. The two surface proteins, hemagglutinin (HA) and neuraminidase (NA), of the influenza virus have been the focus of most flu research due to their crucial biological functions. In our previous study on 2009 H1N1, three aspects of NA were investigated: the mutations and co-mutations, the stalk motifs, and the phylogenetic analysis. In this study, we turned our attention to HA and the interaction between HA and NA. The 118 mutations of 2009 H1N1 HA were found and mapped to the 3D homology model of H1, and the mutations on the five epitope regions on H1 were identified. This information is essential for developing new drugs and vaccine. The distinct response patterns of HA to the changes of NA stalk motifs were discovered, illustrating the functional dependence between HA and NA. With help from our previous results, two co-mutation networks were uncovered, one in HA and one in NA, where each mutation in one network co-mutates with the mutations in the other network across the two proteins HA and NA. These two networks residing in HA and NA separately may provide a functional linkage between the mutations that can impact the drug binding sites in NA and those that can affect the host immune response or vaccine efficacy in HA. Our findings demonstrated the value of conducting timely analysis on the 2009 H1N1 virus and of the integrated approach to studying both surface proteins HA and NA together to reveal their interdependence, which could not be accomplished by studying them individually.展开更多
Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, r...Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid l/k/v-carrageenan (701/17k/13v-car- rabiose), EH was mainly t-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of t-carrageenan (12%). The relative molecular mass ofEW, EH and EA was 480, 580 and 510kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its ICso was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μgmL-1. The ICs0 of t-carrageenan EH was 366.4 μgmL1, whereas EA showed lower anti-H1N1 virus activity (IC50〉430μgmL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eueheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.展开更多
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell cultu...A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome sequences. Sequence comparison revealed they shared a high degree of homology (96%-99%) with known epidemic strains (A/Califomia/04/2009(H1N1). Phylogenetic analysis showed that although the sequences were highly conserved, they clustered into a small number of groups with only a few distinct strains. Site analysis revealed three substitutions at loop 220 (221-228) of the HA receptor binding site in the 39 HA sequences: A/Hubei/86/2009 PKVRDQEG→PKVRDQEA, A/Zhejiang/08/2009 PKVRDQEG→PKVRDQER, A/Hubei/75/2009 PKVRDQEG→PKVRDQGG, the A/Hubei/75/2009 was isolated from an acute case, while the other two were from patients with mild symptoms. Other key sites such as 119, 274, 292 and 294 amino acids of NA protein,627 of PB2 protein were conserved. Meanwhile, all the M2 protein sequences possessed the Ser32Asn mutation, suggesting that these viruses were resistant to adamantanes. Comparison of these sequences with other H1N1 viruses collected from the NCBI database provides insight into H1N1 transmission and circulation patterns.展开更多
Objective Symptomatic predictors of influenza could assess risks and improve decisions about isolation and outpatient treatment. To develop such predictors, we undertook a prospective analysis of pandemic (HIN1) 200...Objective Symptomatic predictors of influenza could assess risks and improve decisions about isolation and outpatient treatment. To develop such predictors, we undertook a prospective analysis of pandemic (HIN1) 2009 and seasonal influenza (H3N2) in patients attending fever clinics. Methods From 1 May 2009 to 1 January 2010, all adult patients admitted to fever clinics for suspected influenza, confirmed by real time RT-PCR, were enrolled. Predictors of influenza virus infection were selected with logistic regression models. Measures of sensitivity, specificity, positive and negative likelihood ratios (LRs) were calculated to identify the best predictors. Results The clinical features and routine blood test results of influenza (H1N1) 2009 and seasonal influenza were similar. The positive and negative LRs of current US CDC influenza-like illness (ILl) criteria were modest in predicting influenza infection. Our modified clinic predictors improved the ability of the positive and negative LRs to recognize pandemic (HIN1) 2009 and seasonal influenza. The revised criteria are: fever ~ 38 ~C accompanied by at least one of the following--cough, arthralgia or relative iymphopenia. Conclusion Patients with symptoms and signs that meet the new criteria are likely to have influenza and timely antiviral therapy may be appropriate. In addition, physicians should ascertain if influenza is circulating within the community or if there is a contact history of influenza and combine this information with the newly developed criteria to clinically diagnose influenza.展开更多
Objective To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. Methods A549 cells ...Objective To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. Methods A549 cells were infected with A/California/07/09 (H1N1) and A/GuangdongBaoan/51/08 (H1N1) respectively at the same MOI of 2 and collected at 2, 4, 8, and 24 h post infection (p.i.). Gene expression profiles of A549 cells were obtained using the 22 K Human Genome Oligo Array, and differentially expressed genes were analyzed at selected time points. Results Microarrays results indicated that both of the viruses suppressed host immune response related pathways including cytokine production while pandemic H1N1 virus displayed weaker suppression of host immune response than seasonal H1N1 virus. Observation on similar anti-apoptotic events such as activation of apoptosis inhibitor and down-regulation of key genes of apoptosis pathways in both infections showed that activities of promoting apoptosis were different in later stage of infection. Conclusion The immuno-suppression and anti-apoptosis events of pandemic H1N1 virus were similar to those seen by seasonal H1N1 virus. The pandemic H1N1 virus had an ability to inhibit biological pathways associated with cytokine responses, NK activation and macrophage recognition .展开更多
To investigate the epizootic of swine influenza virus(SIV),60 nasal swabs were collected from a clinical cases of pig farm in Tai’an City,Shandong Province of China in April 2017.SIV was isolated by inoculating into ...To investigate the epizootic of swine influenza virus(SIV),60 nasal swabs were collected from a clinical cases of pig farm in Tai’an City,Shandong Province of China in April 2017.SIV was isolated by inoculating into 10-day-old Special Pathogen Free embryonated eggs and the whole genome was sequenced.An H1N1 subtype SIV was isolated and designated as A/swine/Shandong/TA04/2017(H1N1).Phylogenetic analysis showed that apart from the polymerase A(PA) fragment belonging to the 2009 pandemic H1N1 branch,seven genome segments belonged to avian-like H1N1 influenza virus lineage.The cleavage site sequence of the hemagglutinin(HA) protein was PSIQSR↓G,which is a typical molecular biological characteristic.Five potential N-glycosylation sites(N14,N26,N277,N484 and N543) were found in the HA gene.To further investigate the epidemiology of SIV in this farm,the 995 serum samples were assessed with EAH1N1 2009 pandemic H1N1 and H3 N2 antigens.The results showed that the total positive rate was 65.43%.The positive rates of single virus infection detected by EAH1N1,2009 pdmH1N1 and H3 N2 for serum HI(Hemagglutination inhibition) were 48.35,30.85 and 7.47%,respectively.The results showed that SIV in Shandong Province has been reassorted in some segments and the SIV-positive rate was high on the SIV outbreak farm.These data provide evidence of an epizootic of SIV.展开更多
As we enter the year of 2011, the 2009 H1N1 pandemic influenza virus is in the news again. At least 20 people have died of this virus in China since the beginning of 2011 and it is now the predominant flu strain in th...As we enter the year of 2011, the 2009 H1N1 pandemic influenza virus is in the news again. At least 20 people have died of this virus in China since the beginning of 2011 and it is now the predominant flu strain in the country. Although this novel virus was quite stable during its run in the flu season of 2009-2010, a genetic variant of this virus was found in Singapore in early 2010, and then in Australia and New Zealand during their 2010 winter influenza season. Several critical mutations in the HA protein of this variant were uncovered in the strains collected from January 2010 to April 2010. Moreover, a structural homology model of HA from the A/Brisbane/10/2010(H1N1) strain was made based on the structure of A/California/04/2009 (H1N1). The purpose of this study was to investigate mutations in the HA protein of 2009 H1N1 from sequence data collected worldwide from May 2010 to February 2011. A fundamental problem in bioinformatics and biology is to find the similar gene sequences for a given gene sequence of interest. Here we proposed the inverse problem, i.e., finding the exemplars from a group of related gene sequences. With a clustering algorithm affinity propagation, six exemplars of the HA sequences were identified to represent six clusters. One of the clusters contained strain A/Brisbane/12/2010(H1N1) that only differed from A/Brisbane/10/2010 in the HA sequence at position 449. Based on the sequence identity of the six exemplars, nine mutations in HA were located that could be used to distinguish these six clusters. Finally, we discovered the change of correlation patterns for the HA and NA of 2009 H1N1 as a result of the HA receptor binding specificity switch, revealing the balanced interplay between these two surface proteins of the virus.展开更多
The genome characteristics and structural functions of coding proteins correlate with the genetic diversity of the H1N1 virus,which aids in the understanding of its underlying pathogenic mechanism.In this study,analys...The genome characteristics and structural functions of coding proteins correlate with the genetic diversity of the H1N1 virus,which aids in the understanding of its underlying pathogenic mechanism.In this study,analyses of the characteristic of the H1N1 virus infection-related genes,their biological functions,and infection-related reversal drugs were performed.Additionally,we used multi-dimensional bioinformatics analysis to identify the key genes and then used these to construct a diagnostic model for the H1N1 virus infection.There was a total of 169 differently expressed genes in the samples between 21 h before infection and 77 h after infection.They were used during the protein-protein interaction(PPI)analysis,and we obtained a total of 1725 interacting genes.Then,we performed a weighted gene co-expression network analysis(WGCNA)on these genes,and we identified three modules that showed significant potential for the diagnosis of the H1N1 virus infection.These modules contained 60 genes,and they were used to construct this diagnostic model,which showed an effective prediction value.Besides,these 60 genes were involved in the biological functions of this infectious virus,like the cellular response to type I interferon and in the negative regulation of the viral life cycle.However,20 genes showed an upregulated expression as the infection progressed.Other 36 upregulated genes were used to examine the relationship between genes,human influenza A virus,and infection-related reversal drugs.This study revealed numerous important reversal drug molecules on the H1N1 virus.They included rimantadine,interferons,and shikimic acid.Our study provided a novel method to analyze the characteristic of different genes and explore their corresponding biological function during the infection caused by the H1N1 virus.This diagnostic model,which comprises 60 genes,shows that a significant predictive value can be the potential biomarker for the diagnosis of the H1N1 virus infection.展开更多
BACKGROUND:The 2009 H1N1 influenza A virus was first identified in April 2009 and rapidly evolved into a pandemic. Recipients of solid-organ transplants have a higher risk for severe infection because of immunosuppres...BACKGROUND:The 2009 H1N1 influenza A virus was first identified in April 2009 and rapidly evolved into a pandemic. Recipients of solid-organ transplants have a higher risk for severe infection because of immunosuppression.There are limited reports of 2009 H1N1 influenza in liver transplant recipients,especially in China. METHODS:We present a case of a 48-year-old male liver transplant recipient with 2009 H1N1 influenza A virus.He received therapy for acute rejection after transplantation and was confirmed with H1N1 virus infection. RESULTS:The patient was started on oseltamivir(75 mg, orally twice daily)and had a benign hospital course,with defervescence and resolution of symptoms within 72 hours. The follow-up chest radiograph after discharge was normal. CONCLUSIONS:The 2009 H1N1 influenza in this hospitalized transplant recipient was relatively mild,and prolonged viral shedding was not noted.Oseltamivir can be a valid measure in immunocompromised individuals.展开更多
The pig industry in Colombia has grown 30% in the last decade achieving high levels of technology and efficiency;in spite of that, respiratory diseases remain a constraint. Since 1970, serological evidence and histolo...The pig industry in Colombia has grown 30% in the last decade achieving high levels of technology and efficiency;in spite of that, respiratory diseases remain a constraint. Since 1970, serological evidence and histological findings suggested the role of swine influenza virus (SIV) as part of the porcine respiratory disease complex;nevertheless, elusive and molecular typing isolates are missing. This study was aimed at isolating SIV from intensive pig farms and to achieve molecular characterization to determine strains circulating in the field. In order to accomplish this goal, 242 samples were taken from nasal swabs, 25 from bronchial washes and 8 from lung tissue. Samples were collected during a period of three years, between 2008 and 2010 and were originated from 78 farms of the three main pig production regions of the country. The samples were transported in BHI broth with 2% antibiotic and antimycotic solution and stored at –70?C until processed. The swabs were inoculated in 9 - 11 days old embryo chicken eggs and in MDCK (Madin Darby Canine Kidney) cell cultures with the addition of trypsin. The isolates were identified by the HA (hemoagglutination) test and by RT-PCR targeting the HA (hemagglutinin), NA (Neuraminidase) and M (Matrix) genes. Full length sequence of the HA and NA glycoproteins from four selected virus isolates was conducted (Macrogen?. USA). As a result, fifteen SIV isolates from nine farms distributed in the three regions were obtained. Twelve of the isolates are related to the swine origin H1N1 virus that caused the 2009 influenza pandemic. The remaining three viruses were related to classical swine influenza viruses.展开更多
A recent phylogenetic inference indicated that the 2009 pandemic H1N1 strains circulating from March 2009 to September 2009 could be divided into two closely related but distinct clusters. Cluster one contained most s...A recent phylogenetic inference indicated that the 2009 pandemic H1N1 strains circulating from March 2009 to September 2009 could be divided into two closely related but distinct clusters. Cluster one contained most strains from Mexico, Texas, and California, and cluster two had most strains from New York, both of which were reported to co-circulate in all continents. The same study further revealed nine nucleotide changes in six gene segments of the new virus specific for the two clusters. In the current study, the informational spectrum method (ISM), a bioinformatics technique, was employed to study the receptor binding patterns of the two clusters. It discovered that while both groups shared the same primary human binding affinity, their secondary binding preferences were different. Cluster one favored swine binding as its secondary binding pattern, whereas cluster two mostly exhibited the binding specificity of A/South Carolina/1/18 (H1N1) (one of the 1918 flu pandemic strains) as its secondary binding pattern. Besides all the nine nucleotide changes found in the previous study, Random Forests were applied to uncover several new nucleotide polymorphisms in 10 genes of the strains between the two clusters, and several amino acid changes in the HA protein that might be accountable for the discrepancy of the secondary receptor binding patterns of the two clusters. Finally, entropy analysis was conducted to present a global view of gene sequence variations between the two clusters, which illustrated that cluster one had much higher genetic divergence than cluster two. Furthermore, it suggested a significant overall correspondence between the nucleotide positions of high importance in differentiating the two clusters and nucleotide positions of high entropy in cluster one.展开更多
Recently, a genetic variant of 2009 H1N1 has become the predominant virus circulating in the southern hemisphere, particularly Australia and New Zealand, and in Singapore during the winter of 2010. It was associated w...Recently, a genetic variant of 2009 H1N1 has become the predominant virus circulating in the southern hemisphere, particularly Australia and New Zealand, and in Singapore during the winter of 2010. It was associated with several vaccine breakthroughs and fatal cases. We analyzed three reported mutations D94N, N125D, and V250A in the HA protein of this genetic variant. It appeared that the reason for D94N and V250A to occur in pairs was to maintain the HA binding to human type receptor, so the virus could replicate in humans efficiently. Guided by this interpretation, we discovered a new mutation V30A that could compensate for N125D as V250A did for D94N. We demonstrated that the presence of amino acids 30A and 125N in HA enhanced the binding to human type receptor, while 30V and 125D favored the receptors of avian type and of A/South Carolina/1/18 (H1N1). Furthermore, a combination of 94D, 125D, and 250V made the primary binding preference similar to that of A/South Carolina/1/18 (H1N1) and a combination of 94N, 125D, and 250A resulted in the primary binding affinity for avian type receptor, which clearly differed from that of A/California/07/2009 (H1N1), a strain used in the vaccine for 2009 H1N1. We also re-examined the origin of 2009 H1N1 to refine our knowledge of this important issue. Although the NP, PA, PB1, and PB2 of 2009 H1N1 were closest to North American swine H3N2 in sequence identity, their interaction patterns were closest to swine H1N1 in North America.展开更多
Objective To analyze the clinical features,therapeutic management and risk factors for mortality of patients with severe novel A(H1N1)influenza in Shanghai,China.Methods All patients were diagnosed by influenza A(H1N1...Objective To analyze the clinical features,therapeutic management and risk factors for mortality of patients with severe novel A(H1N1)influenza in Shanghai,China.Methods All patients were diagnosed by influenza A(H1N1)virus mRNA detection.Chest CT scan,routine blood,hepatic function,humoral and cellular immunity,sputum smears,and sputum cultures were performed.Logistic analysis was applied to identify risk factors for mortality.Results Total of 68 patients were enrolled in this study,the primary clinical symptoms including cough(66,97.1%),expectoration(41,60.3%),and polypnea(41,60.3%).Altogether,37(54.4%)and 11(16.2%)patients were infected with bacterial and fungal,respectively.CT scan demonstrated that 67(98.6%)patients had pneumonia.Oxygen therapy,oseltamivir,antibiotic and antifungal drugs were performed in 68(100%),66(97.1%),39(57.4%),and 11(16.2%)patients,respectively.Finally,4 of 68 patients died.Logistic analysis demonstrated that there was a significant correlation between the percentage of neutrophils and mortality before therapy and direct bilirubin content and mortality after therapy,respectively.Conclusions Patients with severe H1N1 influenza were susceptible to bacterial and/or fungal infection.The risk factors for mortality may be associated with pre-therapeutic neutrophil percentage and post-therapeutic direct bilirubin content.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2009434)the Innovation Platform for Public Health Emergency Preparedness and Response(NO.ZX201109)the Key Medical Talent Foundation of Jiangsu Province(RC2011084)
文摘Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.
文摘In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.
文摘Objective:To investigate the effects of influenza A virus H1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purified influenza A virus H1N1 in vitro,viral integration and replication status of the cells were detected by RT-PCR assay,cell proliferation and apoptosis was determined by MTT method and flow cytometry,respectively.Associated protein expression was delected by Western blotting.Results:Agarose gel electrophoresis showed H1N1 virus can infect astrocytes and can be copied.MTT staining showed H1N1 virus infection can inhibit the proliferation of mouse astrocytes,which makes cell viability decreased significantly.Flow cytometry showed that the proportion of Annein V staining positive vascular endothelial cells in the influenza A virus group was significantly higher than that in the control group.Western blot analysis showed after24 h and 32 h of infection,there were cells caspase-3 protein and the expression of its active form(lysed caspase-3 protein)increased.The proportion of Bax/Bcl-2 also increased.Conclusions:Influenza A virus can infect human vascular endothelial cells and proliferation and it can induce apoptosis of endothelial cells.
文摘As the world is closely watching the current 2009 H1N1 pandemic unfold, there is a great interest and need in understanding its origin, genetic structures, virulence, and pathogenicity. The two surface proteins, hemagglutinin (HA) and neuraminidase (NA), of the influenza virus have been the focus of most flu research due to their crucial biological functions. In our previous study on 2009 H1N1, three aspects of NA were investigated: the mutations and co-mutations, the stalk motifs, and the phylogenetic analysis. In this study, we turned our attention to HA and the interaction between HA and NA. The 118 mutations of 2009 H1N1 HA were found and mapped to the 3D homology model of H1, and the mutations on the five epitope regions on H1 were identified. This information is essential for developing new drugs and vaccine. The distinct response patterns of HA to the changes of NA stalk motifs were discovered, illustrating the functional dependence between HA and NA. With help from our previous results, two co-mutation networks were uncovered, one in HA and one in NA, where each mutation in one network co-mutates with the mutations in the other network across the two proteins HA and NA. These two networks residing in HA and NA separately may provide a functional linkage between the mutations that can impact the drug binding sites in NA and those that can affect the host immune response or vaccine efficacy in HA. Our findings demonstrated the value of conducting timely analysis on the 2009 H1N1 virus and of the integrated approach to studying both surface proteins HA and NA together to reveal their interdependence, which could not be accomplished by studying them individually.
基金supported by International Science and Technology Collaboration Program of China (2007DFA-30980)Program for Changjiang Scholars,Innovative Research Team in University (IRT0944)+1 种基金Natural Science Foundation of China (31070724)Special Fund for Marine Scientific Research in the Public Interest (201005024)
文摘Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid l/k/v-carrageenan (701/17k/13v-car- rabiose), EH was mainly t-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of t-carrageenan (12%). The relative molecular mass ofEW, EH and EA was 480, 580 and 510kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its ICso was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μgmL-1. The ICs0 of t-carrageenan EH was 366.4 μgmL1, whereas EA showed lower anti-H1N1 virus activity (IC50〉430μgmL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eueheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.
基金The Ministry of Science and Technology of China (2010CB534005,2007FY210700, 2009ZX10004109)the National Natural Science Foundation of China (30970024,30900060)+2 种基金The National R&D Infrastructure and Facility Development Program of China under Grant No. BSDN2009-10 &18The Chinese Academy of Sciences (KSCX2-YW- N-065, KSCX2-YW-R-157, 158 and 159 INFO-115-C01-SDB3-01, INFO-115-C01-SDB4-21, IN-FO-115-D02, IN-FO- 115-C01-SDB2-02)
文摘A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome sequences. Sequence comparison revealed they shared a high degree of homology (96%-99%) with known epidemic strains (A/Califomia/04/2009(H1N1). Phylogenetic analysis showed that although the sequences were highly conserved, they clustered into a small number of groups with only a few distinct strains. Site analysis revealed three substitutions at loop 220 (221-228) of the HA receptor binding site in the 39 HA sequences: A/Hubei/86/2009 PKVRDQEG→PKVRDQEA, A/Zhejiang/08/2009 PKVRDQEG→PKVRDQER, A/Hubei/75/2009 PKVRDQEG→PKVRDQGG, the A/Hubei/75/2009 was isolated from an acute case, while the other two were from patients with mild symptoms. Other key sites such as 119, 274, 292 and 294 amino acids of NA protein,627 of PB2 protein were conserved. Meanwhile, all the M2 protein sequences possessed the Ser32Asn mutation, suggesting that these viruses were resistant to adamantanes. Comparison of these sequences with other H1N1 viruses collected from the NCBI database provides insight into H1N1 transmission and circulation patterns.
基金supported by Chinese National Programs for High Technology Research and Development (863 Program,2008AA02Z416)
文摘Objective Symptomatic predictors of influenza could assess risks and improve decisions about isolation and outpatient treatment. To develop such predictors, we undertook a prospective analysis of pandemic (HIN1) 2009 and seasonal influenza (H3N2) in patients attending fever clinics. Methods From 1 May 2009 to 1 January 2010, all adult patients admitted to fever clinics for suspected influenza, confirmed by real time RT-PCR, were enrolled. Predictors of influenza virus infection were selected with logistic regression models. Measures of sensitivity, specificity, positive and negative likelihood ratios (LRs) were calculated to identify the best predictors. Results The clinical features and routine blood test results of influenza (H1N1) 2009 and seasonal influenza were similar. The positive and negative LRs of current US CDC influenza-like illness (ILl) criteria were modest in predicting influenza infection. Our modified clinic predictors improved the ability of the positive and negative LRs to recognize pandemic (HIN1) 2009 and seasonal influenza. The revised criteria are: fever ~ 38 ~C accompanied by at least one of the following--cough, arthralgia or relative iymphopenia. Conclusion Patients with symptoms and signs that meet the new criteria are likely to have influenza and timely antiviral therapy may be appropriate. In addition, physicians should ascertain if influenza is circulating within the community or if there is a contact history of influenza and combine this information with the newly developed criteria to clinically diagnose influenza.
基金supported by the National Basic Research Program of China (973 program: 2010CB534001)
文摘Objective To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. Methods A549 cells were infected with A/California/07/09 (H1N1) and A/GuangdongBaoan/51/08 (H1N1) respectively at the same MOI of 2 and collected at 2, 4, 8, and 24 h post infection (p.i.). Gene expression profiles of A549 cells were obtained using the 22 K Human Genome Oligo Array, and differentially expressed genes were analyzed at selected time points. Results Microarrays results indicated that both of the viruses suppressed host immune response related pathways including cytokine production while pandemic H1N1 virus displayed weaker suppression of host immune response than seasonal H1N1 virus. Observation on similar anti-apoptotic events such as activation of apoptosis inhibitor and down-regulation of key genes of apoptosis pathways in both infections showed that activities of promoting apoptosis were different in later stage of infection. Conclusion The immuno-suppression and anti-apoptosis events of pandemic H1N1 virus were similar to those seen by seasonal H1N1 virus. The pandemic H1N1 virus had an ability to inhibit biological pathways associated with cytokine responses, NK activation and macrophage recognition .
基金the National Key Research and Development Program of China(2016YFD0500201)the Shandong “Double Tops” Program,China
文摘To investigate the epizootic of swine influenza virus(SIV),60 nasal swabs were collected from a clinical cases of pig farm in Tai’an City,Shandong Province of China in April 2017.SIV was isolated by inoculating into 10-day-old Special Pathogen Free embryonated eggs and the whole genome was sequenced.An H1N1 subtype SIV was isolated and designated as A/swine/Shandong/TA04/2017(H1N1).Phylogenetic analysis showed that apart from the polymerase A(PA) fragment belonging to the 2009 pandemic H1N1 branch,seven genome segments belonged to avian-like H1N1 influenza virus lineage.The cleavage site sequence of the hemagglutinin(HA) protein was PSIQSR↓G,which is a typical molecular biological characteristic.Five potential N-glycosylation sites(N14,N26,N277,N484 and N543) were found in the HA gene.To further investigate the epidemiology of SIV in this farm,the 995 serum samples were assessed with EAH1N1 2009 pandemic H1N1 and H3 N2 antigens.The results showed that the total positive rate was 65.43%.The positive rates of single virus infection detected by EAH1N1,2009 pdmH1N1 and H3 N2 for serum HI(Hemagglutination inhibition) were 48.35,30.85 and 7.47%,respectively.The results showed that SIV in Shandong Province has been reassorted in some segments and the SIV-positive rate was high on the SIV outbreak farm.These data provide evidence of an epizootic of SIV.
文摘As we enter the year of 2011, the 2009 H1N1 pandemic influenza virus is in the news again. At least 20 people have died of this virus in China since the beginning of 2011 and it is now the predominant flu strain in the country. Although this novel virus was quite stable during its run in the flu season of 2009-2010, a genetic variant of this virus was found in Singapore in early 2010, and then in Australia and New Zealand during their 2010 winter influenza season. Several critical mutations in the HA protein of this variant were uncovered in the strains collected from January 2010 to April 2010. Moreover, a structural homology model of HA from the A/Brisbane/10/2010(H1N1) strain was made based on the structure of A/California/04/2009 (H1N1). The purpose of this study was to investigate mutations in the HA protein of 2009 H1N1 from sequence data collected worldwide from May 2010 to February 2011. A fundamental problem in bioinformatics and biology is to find the similar gene sequences for a given gene sequence of interest. Here we proposed the inverse problem, i.e., finding the exemplars from a group of related gene sequences. With a clustering algorithm affinity propagation, six exemplars of the HA sequences were identified to represent six clusters. One of the clusters contained strain A/Brisbane/12/2010(H1N1) that only differed from A/Brisbane/10/2010 in the HA sequence at position 449. Based on the sequence identity of the six exemplars, nine mutations in HA were located that could be used to distinguish these six clusters. Finally, we discovered the change of correlation patterns for the HA and NA of 2009 H1N1 as a result of the HA receptor binding specificity switch, revealing the balanced interplay between these two surface proteins of the virus.
基金supported by the major national S&T projects for infectious diseases(2018ZX10301401)the Key Research&Development Plan of Zhejiang Province(2019C04005)the National Key Research,and the Development Program of China(2018YFC2000500).
文摘The genome characteristics and structural functions of coding proteins correlate with the genetic diversity of the H1N1 virus,which aids in the understanding of its underlying pathogenic mechanism.In this study,analyses of the characteristic of the H1N1 virus infection-related genes,their biological functions,and infection-related reversal drugs were performed.Additionally,we used multi-dimensional bioinformatics analysis to identify the key genes and then used these to construct a diagnostic model for the H1N1 virus infection.There was a total of 169 differently expressed genes in the samples between 21 h before infection and 77 h after infection.They were used during the protein-protein interaction(PPI)analysis,and we obtained a total of 1725 interacting genes.Then,we performed a weighted gene co-expression network analysis(WGCNA)on these genes,and we identified three modules that showed significant potential for the diagnosis of the H1N1 virus infection.These modules contained 60 genes,and they were used to construct this diagnostic model,which showed an effective prediction value.Besides,these 60 genes were involved in the biological functions of this infectious virus,like the cellular response to type I interferon and in the negative regulation of the viral life cycle.However,20 genes showed an upregulated expression as the infection progressed.Other 36 upregulated genes were used to examine the relationship between genes,human influenza A virus,and infection-related reversal drugs.This study revealed numerous important reversal drug molecules on the H1N1 virus.They included rimantadine,interferons,and shikimic acid.Our study provided a novel method to analyze the characteristic of different genes and explore their corresponding biological function during the infection caused by the H1N1 virus.This diagnostic model,which comprises 60 genes,shows that a significant predictive value can be the potential biomarker for the diagnosis of the H1N1 virus infection.
基金supported by a grant from the National Key Technology R&D Program of China(2008ZX10002-26)
文摘BACKGROUND:The 2009 H1N1 influenza A virus was first identified in April 2009 and rapidly evolved into a pandemic. Recipients of solid-organ transplants have a higher risk for severe infection because of immunosuppression.There are limited reports of 2009 H1N1 influenza in liver transplant recipients,especially in China. METHODS:We present a case of a 48-year-old male liver transplant recipient with 2009 H1N1 influenza A virus.He received therapy for acute rejection after transplantation and was confirmed with H1N1 virus infection. RESULTS:The patient was started on oseltamivir(75 mg, orally twice daily)and had a benign hospital course,with defervescence and resolution of symptoms within 72 hours. The follow-up chest radiograph after discharge was normal. CONCLUSIONS:The 2009 H1N1 influenza in this hospitalized transplant recipient was relatively mild,and prolonged viral shedding was not noted.Oseltamivir can be a valid measure in immunocompromised individuals.
文摘The pig industry in Colombia has grown 30% in the last decade achieving high levels of technology and efficiency;in spite of that, respiratory diseases remain a constraint. Since 1970, serological evidence and histological findings suggested the role of swine influenza virus (SIV) as part of the porcine respiratory disease complex;nevertheless, elusive and molecular typing isolates are missing. This study was aimed at isolating SIV from intensive pig farms and to achieve molecular characterization to determine strains circulating in the field. In order to accomplish this goal, 242 samples were taken from nasal swabs, 25 from bronchial washes and 8 from lung tissue. Samples were collected during a period of three years, between 2008 and 2010 and were originated from 78 farms of the three main pig production regions of the country. The samples were transported in BHI broth with 2% antibiotic and antimycotic solution and stored at –70?C until processed. The swabs were inoculated in 9 - 11 days old embryo chicken eggs and in MDCK (Madin Darby Canine Kidney) cell cultures with the addition of trypsin. The isolates were identified by the HA (hemoagglutination) test and by RT-PCR targeting the HA (hemagglutinin), NA (Neuraminidase) and M (Matrix) genes. Full length sequence of the HA and NA glycoproteins from four selected virus isolates was conducted (Macrogen?. USA). As a result, fifteen SIV isolates from nine farms distributed in the three regions were obtained. Twelve of the isolates are related to the swine origin H1N1 virus that caused the 2009 influenza pandemic. The remaining three viruses were related to classical swine influenza viruses.
文摘A recent phylogenetic inference indicated that the 2009 pandemic H1N1 strains circulating from March 2009 to September 2009 could be divided into two closely related but distinct clusters. Cluster one contained most strains from Mexico, Texas, and California, and cluster two had most strains from New York, both of which were reported to co-circulate in all continents. The same study further revealed nine nucleotide changes in six gene segments of the new virus specific for the two clusters. In the current study, the informational spectrum method (ISM), a bioinformatics technique, was employed to study the receptor binding patterns of the two clusters. It discovered that while both groups shared the same primary human binding affinity, their secondary binding preferences were different. Cluster one favored swine binding as its secondary binding pattern, whereas cluster two mostly exhibited the binding specificity of A/South Carolina/1/18 (H1N1) (one of the 1918 flu pandemic strains) as its secondary binding pattern. Besides all the nine nucleotide changes found in the previous study, Random Forests were applied to uncover several new nucleotide polymorphisms in 10 genes of the strains between the two clusters, and several amino acid changes in the HA protein that might be accountable for the discrepancy of the secondary receptor binding patterns of the two clusters. Finally, entropy analysis was conducted to present a global view of gene sequence variations between the two clusters, which illustrated that cluster one had much higher genetic divergence than cluster two. Furthermore, it suggested a significant overall correspondence between the nucleotide positions of high importance in differentiating the two clusters and nucleotide positions of high entropy in cluster one.
文摘Recently, a genetic variant of 2009 H1N1 has become the predominant virus circulating in the southern hemisphere, particularly Australia and New Zealand, and in Singapore during the winter of 2010. It was associated with several vaccine breakthroughs and fatal cases. We analyzed three reported mutations D94N, N125D, and V250A in the HA protein of this genetic variant. It appeared that the reason for D94N and V250A to occur in pairs was to maintain the HA binding to human type receptor, so the virus could replicate in humans efficiently. Guided by this interpretation, we discovered a new mutation V30A that could compensate for N125D as V250A did for D94N. We demonstrated that the presence of amino acids 30A and 125N in HA enhanced the binding to human type receptor, while 30V and 125D favored the receptors of avian type and of A/South Carolina/1/18 (H1N1). Furthermore, a combination of 94D, 125D, and 250V made the primary binding preference similar to that of A/South Carolina/1/18 (H1N1) and a combination of 94N, 125D, and 250A resulted in the primary binding affinity for avian type receptor, which clearly differed from that of A/California/07/2009 (H1N1), a strain used in the vaccine for 2009 H1N1. We also re-examined the origin of 2009 H1N1 to refine our knowledge of this important issue. Although the NP, PA, PB1, and PB2 of 2009 H1N1 were closest to North American swine H3N2 in sequence identity, their interaction patterns were closest to swine H1N1 in North America.
基金supported by a grant-in-aid from the state administration of Traditional Chinese Medicine of China for the infectious disease prophylaxis and treatment through grant number 200907001-2
文摘Objective To analyze the clinical features,therapeutic management and risk factors for mortality of patients with severe novel A(H1N1)influenza in Shanghai,China.Methods All patients were diagnosed by influenza A(H1N1)virus mRNA detection.Chest CT scan,routine blood,hepatic function,humoral and cellular immunity,sputum smears,and sputum cultures were performed.Logistic analysis was applied to identify risk factors for mortality.Results Total of 68 patients were enrolled in this study,the primary clinical symptoms including cough(66,97.1%),expectoration(41,60.3%),and polypnea(41,60.3%).Altogether,37(54.4%)and 11(16.2%)patients were infected with bacterial and fungal,respectively.CT scan demonstrated that 67(98.6%)patients had pneumonia.Oxygen therapy,oseltamivir,antibiotic and antifungal drugs were performed in 68(100%),66(97.1%),39(57.4%),and 11(16.2%)patients,respectively.Finally,4 of 68 patients died.Logistic analysis demonstrated that there was a significant correlation between the percentage of neutrophils and mortality before therapy and direct bilirubin content and mortality after therapy,respectively.Conclusions Patients with severe H1N1 influenza were susceptible to bacterial and/or fungal infection.The risk factors for mortality may be associated with pre-therapeutic neutrophil percentage and post-therapeutic direct bilirubin content.