Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encodi...Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.展开更多
The relentless march of a highly pathogenic avian influenza virus(HPAIV)strain,known as H5N1,to become an unprecedented panzootic continues unchecked.The leap of H5N1 clade 2.3.4.4b from Eurasia and Africa to North Am...The relentless march of a highly pathogenic avian influenza virus(HPAIV)strain,known as H5N1,to become an unprecedented panzootic continues unchecked.The leap of H5N1 clade 2.3.4.4b from Eurasia and Africa to North America in 2021 and its further spread to South America and the Antarctic have exposed new avian and mammalian populations to the virus and led to outbreaks on an unrivaled scale.The virus has infected wild birds across vast geographic regions and caused wildlife deaths in some of the world's most biodiverse ecosystems.展开更多
Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in...Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.展开更多
Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (HSN 1) in chicken. Crude extraction from Cochinchina momordica seed (ECM...Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (HSN 1) in chicken. Crude extraction from Cochinchina momordica seed (ECMS) was obtained by ethanol extraction method. In experiment No. 1, two weeks old chickens were immunized with influenza vaccine (HSN1) alone or combined with ECMS (5, 10, 20, 40 and 80 μg/dose). Serum IgG antibody levels (by ELISA) as well as effects on dally weight gain were measured on 0, 7, 14 and 28th day after immunization. Results revealed that all ECMS groups numerically increased the antibody levels while 10 and 20 μg/dose groups significantly (P〈0.05) enhanced total IgG antibody on day 28, when compared with control. Average daily weight gain was also significantly higher in 20 μg/dose ECMS group. Adjuvant effect was also confirmed in experiment No. 2 when chickens were immunized with 20 μg/dose ECMS and antibody titer was measured through hemagglutination inhibition (HI). It is concluded that ECMS has potential to improve the immune responses and deserve further study as an adjuvant.展开更多
Objective Symptomatic predictors of influenza could assess risks and improve decisions about isolation and outpatient treatment. To develop such predictors, we undertook a prospective analysis of pandemic (HIN1) 200...Objective Symptomatic predictors of influenza could assess risks and improve decisions about isolation and outpatient treatment. To develop such predictors, we undertook a prospective analysis of pandemic (HIN1) 2009 and seasonal influenza (H3N2) in patients attending fever clinics. Methods From 1 May 2009 to 1 January 2010, all adult patients admitted to fever clinics for suspected influenza, confirmed by real time RT-PCR, were enrolled. Predictors of influenza virus infection were selected with logistic regression models. Measures of sensitivity, specificity, positive and negative likelihood ratios (LRs) were calculated to identify the best predictors. Results The clinical features and routine blood test results of influenza (H1N1) 2009 and seasonal influenza were similar. The positive and negative LRs of current US CDC influenza-like illness (ILl) criteria were modest in predicting influenza infection. Our modified clinic predictors improved the ability of the positive and negative LRs to recognize pandemic (HIN1) 2009 and seasonal influenza. The revised criteria are: fever ~ 38 ~C accompanied by at least one of the following--cough, arthralgia or relative iymphopenia. Conclusion Patients with symptoms and signs that meet the new criteria are likely to have influenza and timely antiviral therapy may be appropriate. In addition, physicians should ascertain if influenza is circulating within the community or if there is a contact history of influenza and combine this information with the newly developed criteria to clinically diagnose influenza.展开更多
The HA1 gene of H3N2 subtype swine influenza virus(SIV)was cloned into the expression plasmid pET-30a,the recombinant plasmid was named pET-HAl.This was transformed into E.coli BL21(DE3),and expressed by induction wit...The HA1 gene of H3N2 subtype swine influenza virus(SIV)was cloned into the expression plasmid pET-30a,the recombinant plasmid was named pET-HAl.This was transformed into E.coli BL21(DE3),and expressed by induction with IPTG.The expressed HA protein was identified by SDS-PAGE and Western blotting which showed the protein to be 42kDa and was immunoreactive.The purified HA protein was used to establish the indirect ELIS A for detection of the antibodies,specifically against the H3 subtype of SIV.The assay has excellent specificity,sensitivity and reproducibility.When 96 serum samples,randomly collected from the field,were evaluated in parallel by this new ELISA using recombinant HA1 and a routine HI test,the coincidental rate between the two tests was 86.5%.These results show that the recombinant HAl-based ELISA is specific,sensitive and easy to perform for the serological diagnosis of SIV infection.展开更多
Objective To prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China Methods Recombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segme...Objective To prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China Methods Recombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpoll vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embnjonate survival and antigenicity were compared with those of the respective wild-type viruses. Results The 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics. Conclusion The 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.展开更多
Influenza A (H IN l) is a viral infection which can be responsible of severe lung diseases. Mediastinal symptoms are rareespecially pneumomediastinum.The aim of this work is to report a case of a young immunocomprom...Influenza A (H IN l) is a viral infection which can be responsible of severe lung diseases. Mediastinal symptoms are rareespecially pneumomediastinum.The aim of this work is to report a case of a young immunocompromised patient who was admitted tothe intensive care unit for acute respiratory distress that revealed Influenza A H1NI pulmonary infection withpneumomediastinum .The evolution was favorable.展开更多
We report a bioinformatic analysis of the datasets of sequences of all ten genes from the 2009 H1N1 influenza A pandemic in the state of Wisconsin. The gene with the greatest summed information entropy was found to be...We report a bioinformatic analysis of the datasets of sequences of all ten genes from the 2009 H1N1 influenza A pandemic in the state of Wisconsin. The gene with the greatest summed information entropy was found to be the hemagglutinin (HA) gene. Based upon the viral ID identifier of the HA gene sequence, the sequences of all of the genes were sorted into two subsets, depending upon whether the nucleotide occupying the position of maximum entropy, position 658 of the HA sequence, was either A or U. It was found that the information entropy (H) distributions of subsets differed significantly from each other, from H distributions of randomly generated subsets and from the H distributions of the complete datasets of each gene. Mutual information (MI) values facilitated identification of nine nucleotide positions, distributed over seven of the influenza genes, at which the nucleotide subsets were disjoint, or almost disjoint. Nucleotide frequencies at these nine positions were used to compute mutual information values that subsequently served as weighting factors for edges in a graph net-work. Seven of the nucleotide positions in the graph network are sites of synonymous mutations. Three of these sites of synonymous mutation are within a single gene, the M1 gene, which occupied the position of greatest graph centrality. It is proposed that these bioinformatic and network graph results may reflect alterations in M1-mediated viral packaging and exteriorization, known to be susceptible to synonymous mutations.展开更多
The aim of study was to detect H5N1 virus in wild geese in Qinghai Province in 2012. The work was provided according to WHO and OIE guidelines. In 2012, we collected 532 samples from wild geese of two species: Bar-hea...The aim of study was to detect H5N1 virus in wild geese in Qinghai Province in 2012. The work was provided according to WHO and OIE guidelines. In 2012, we collected 532 samples from wild geese of two species: Bar-headed Goose (Anser indicus) and Graylag Goose (Anser anser). We analyzed samples by chicken embryo inoculation and PCR. No avian influenza viruses were isolated. History of HPAI H5N1 shows obvious importance of Central Asian region in its spreading. The outbreaks of the H5N1 Highly Pathogenic Avian Influenza (HPAI H5N1) were reported in wild birds at the Qinghai Lake since 2005. This area seems to be key point for H5N1 avian influenza surveillance in wild birds. We did not find viruses although H5N1 cases in poultry were reported from 5 provinces of China in 2012. Annual surveillance is required for early AIV detection in this region.展开更多
Objective This study aimed to assess the efficacy and safety of traditional Chinese medicine,alone or in combination with oseltamivir,in patients with H1N1 Influenza.Methods In the present study,we searched the Cochra...Objective This study aimed to assess the efficacy and safety of traditional Chinese medicine,alone or in combination with oseltamivir,in patients with H1N1 Influenza.Methods In the present study,we searched the Cochrane Central Register of Controlled Trials,PUBMED,EMBASE,Chinese Biomedical Literature Database,China Science and Technology Journal Database,China National Knowledge Infrastructure Database,and WanFang Data for studies published in or before February 8,2022.Data were extracted and checked by two investigators.Review Manager 5.4 and STATA statistical software 16.0 were used for the data analysis.Results We identified 22 individual studies reporting data from 2292 individuals with H1N1 influenza.Compared with oseltamivir,the fever clearance duration[MD=-3.99,95%CI(-6.89,-1.09)]and sore throat relief time[MD=-5.39,95%CI(-10.19,-0.59)]in the intervention group of traditional Chinese medicine monotherapy or combined with oseltamivir were shorter.Maxingshigan was the primary component of Lianhuaqingwen.The subgroup analyses indicated that Maxingshigan shortened fever clearance time[MD=-3.23,95%CI(-5.60,-0.85)],and also had certain advantages in relieving sore throat[RR=-4.55,95%CI(-10.04,0.95)].However,as for the effective rate,fever duration,cough disappearance time,hospital length of stay,clinical symptoms time as well as viral shedding duration,there were no significant differences between the two groups.Besides,no serious adverse effects were reported in the included studies.Conclusion Although we couldn’t get a definitive conclusion due to the small sample sizes and high risk of bias in the included studies,most traditional Chinese medicine showed similar effects to oseltamivir in treating H1N1 influenza.Some were showed to have a statistically significant shorter time of fever clearance and sore throat remission when they were used alone or in combination with oseltamivir and were well-tolerated treatment,such as Maxingshigan.展开更多
The highly pathogenic avian influenza (HPAI) H5N1 virus has caused several outbreaks in domestic poultry. Despite great efforts to control the spread of this virus, it continues to evolve and poses a substantial thr...The highly pathogenic avian influenza (HPAI) H5N1 virus has caused several outbreaks in domestic poultry. Despite great efforts to control the spread of this virus, it continues to evolve and poses a substantial threat to public health because of a high mortality rate. In this study, we sequenced whole genomes of eight H5N1 avian influenza viruses isolated from domestic poultry in eastern China and compared them with those of typical influenza virus strains. Phylogenetic analyses showed that all eight genomes belonged to clade 2.3.2.1 and clade 7.2, the two main circulating clades in China. Viruses that clustered in clade 2.3.2.1 shared a high degree of homology with H5N1 isolates located in eastern Asian. Isolates that clustered in clade 7.2 were found to circulate throughout China, with an east-to-west density gradient. Pathogenicity studies in mice showed that these isolates replicate in the lungs, and clade 2.3.2.1 viruses exhibit a notably higher degree of virulence compared to clade 7.2 viruses. Our results contribute to the elucidation of the biological characterization and pathogenicity of HPAI H5N1 viruses.展开更多
[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the s...[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.展开更多
All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortalit...All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties.展开更多
Swine are regarded as“intermediate hosts”or“mixing vessels”of influenza viruses,capable of generating strains with pandemic potential.From 2020 to 2021,we conducted surveillance on swine H1N2 influenza(swH1N2)viru...Swine are regarded as“intermediate hosts”or“mixing vessels”of influenza viruses,capable of generating strains with pandemic potential.From 2020 to 2021,we conducted surveillance on swine H1N2 influenza(swH1N2)viruses in swine farms located in Guangdong,Yunnan,and Guizhou provinces in southern China,as well as Henan and Shandong provinces in northern China.We systematically analyzed the evolution and pathogenicity of swH1N2 isolates,and characterized their replication and transmission abilities.The isolated viruses are quadruple reassortant H1N2 viruses containing genes from pdm/09 H1N1(PB2,PB1,PA and NP genes),triple-reassortant swine(NS gene),Eurasian Avian-like(HA and M genes),and recent human H3N2(NA gene)lineages.The NA,PB2,and NP of SW/188/20 and SW/198/20 show high gene similarities to A/Guangdong/Yue Fang277/2017(H3N2).The HA gene of swH1N2 exhibits a high evolutionary rate.The five swH1N2 isolates replicate efficiently in human,canine,and swine cells,as well as in the turbinate,trachea,and lungs of mice.A/swine/Shandong/198/2020 strain efficiently replicates in the respiratory tract of pigs and effectively transmitted among them.Collectively,these current swH1N2 viruses possess zoonotic potential,highlighting the need for strengthened surveillance of swH1N2 viruses.展开更多
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 t...Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.展开更多
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2301403 and 2022YFF0711000。
文摘Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.
文摘The relentless march of a highly pathogenic avian influenza virus(HPAIV)strain,known as H5N1,to become an unprecedented panzootic continues unchecked.The leap of H5N1 clade 2.3.4.4b from Eurasia and Africa to North America in 2021 and its further spread to South America and the Antarctic have exposed new avian and mammalian populations to the virus and led to outbreaks on an unrivaled scale.The virus has infected wild birds across vast geographic regions and caused wildlife deaths in some of the world's most biodiverse ecosystems.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2009434)the Innovation Platform for Public Health Emergency Preparedness and Response(NO.ZX201109)the Key Medical Talent Foundation of Jiangsu Province(RC2011084)
文摘Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.
基金Project(No.2004C32047) supported by the Department of Scienceand Technology of Zhejiang Province,China
文摘Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (HSN 1) in chicken. Crude extraction from Cochinchina momordica seed (ECMS) was obtained by ethanol extraction method. In experiment No. 1, two weeks old chickens were immunized with influenza vaccine (HSN1) alone or combined with ECMS (5, 10, 20, 40 and 80 μg/dose). Serum IgG antibody levels (by ELISA) as well as effects on dally weight gain were measured on 0, 7, 14 and 28th day after immunization. Results revealed that all ECMS groups numerically increased the antibody levels while 10 and 20 μg/dose groups significantly (P〈0.05) enhanced total IgG antibody on day 28, when compared with control. Average daily weight gain was also significantly higher in 20 μg/dose ECMS group. Adjuvant effect was also confirmed in experiment No. 2 when chickens were immunized with 20 μg/dose ECMS and antibody titer was measured through hemagglutination inhibition (HI). It is concluded that ECMS has potential to improve the immune responses and deserve further study as an adjuvant.
基金supported by Chinese National Programs for High Technology Research and Development (863 Program,2008AA02Z416)
文摘Objective Symptomatic predictors of influenza could assess risks and improve decisions about isolation and outpatient treatment. To develop such predictors, we undertook a prospective analysis of pandemic (HIN1) 2009 and seasonal influenza (H3N2) in patients attending fever clinics. Methods From 1 May 2009 to 1 January 2010, all adult patients admitted to fever clinics for suspected influenza, confirmed by real time RT-PCR, were enrolled. Predictors of influenza virus infection were selected with logistic regression models. Measures of sensitivity, specificity, positive and negative likelihood ratios (LRs) were calculated to identify the best predictors. Results The clinical features and routine blood test results of influenza (H1N1) 2009 and seasonal influenza were similar. The positive and negative LRs of current US CDC influenza-like illness (ILl) criteria were modest in predicting influenza infection. Our modified clinic predictors improved the ability of the positive and negative LRs to recognize pandemic (HIN1) 2009 and seasonal influenza. The revised criteria are: fever ~ 38 ~C accompanied by at least one of the following--cough, arthralgia or relative iymphopenia. Conclusion Patients with symptoms and signs that meet the new criteria are likely to have influenza and timely antiviral therapy may be appropriate. In addition, physicians should ascertain if influenza is circulating within the community or if there is a contact history of influenza and combine this information with the newly developed criteria to clinically diagnose influenza.
基金supported by the Chinese National S&T Plan(2004BA519A55)
文摘The HA1 gene of H3N2 subtype swine influenza virus(SIV)was cloned into the expression plasmid pET-30a,the recombinant plasmid was named pET-HAl.This was transformed into E.coli BL21(DE3),and expressed by induction with IPTG.The expressed HA protein was identified by SDS-PAGE and Western blotting which showed the protein to be 42kDa and was immunoreactive.The purified HA protein was used to establish the indirect ELIS A for detection of the antibodies,specifically against the H3 subtype of SIV.The assay has excellent specificity,sensitivity and reproducibility.When 96 serum samples,randomly collected from the field,were evaluated in parallel by this new ELISA using recombinant HA1 and a routine HI test,the coincidental rate between the two tests was 86.5%.These results show that the recombinant HAl-based ELISA is specific,sensitive and easy to perform for the serological diagnosis of SIV infection.
基金supported by the National High Technology Research and Development Program of China(863 Program)SQ2009AA02XK1487370
文摘Objective To prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China Methods Recombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpoll vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embnjonate survival and antigenicity were compared with those of the respective wild-type viruses. Results The 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics. Conclusion The 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.
文摘Influenza A (H IN l) is a viral infection which can be responsible of severe lung diseases. Mediastinal symptoms are rareespecially pneumomediastinum.The aim of this work is to report a case of a young immunocompromised patient who was admitted tothe intensive care unit for acute respiratory distress that revealed Influenza A H1NI pulmonary infection withpneumomediastinum .The evolution was favorable.
文摘We report a bioinformatic analysis of the datasets of sequences of all ten genes from the 2009 H1N1 influenza A pandemic in the state of Wisconsin. The gene with the greatest summed information entropy was found to be the hemagglutinin (HA) gene. Based upon the viral ID identifier of the HA gene sequence, the sequences of all of the genes were sorted into two subsets, depending upon whether the nucleotide occupying the position of maximum entropy, position 658 of the HA sequence, was either A or U. It was found that the information entropy (H) distributions of subsets differed significantly from each other, from H distributions of randomly generated subsets and from the H distributions of the complete datasets of each gene. Mutual information (MI) values facilitated identification of nine nucleotide positions, distributed over seven of the influenza genes, at which the nucleotide subsets were disjoint, or almost disjoint. Nucleotide frequencies at these nine positions were used to compute mutual information values that subsequently served as weighting factors for edges in a graph net-work. Seven of the nucleotide positions in the graph network are sites of synonymous mutations. Three of these sites of synonymous mutation are within a single gene, the M1 gene, which occupied the position of greatest graph centrality. It is proposed that these bioinformatic and network graph results may reflect alterations in M1-mediated viral packaging and exteriorization, known to be susceptible to synonymous mutations.
文摘The aim of study was to detect H5N1 virus in wild geese in Qinghai Province in 2012. The work was provided according to WHO and OIE guidelines. In 2012, we collected 532 samples from wild geese of two species: Bar-headed Goose (Anser indicus) and Graylag Goose (Anser anser). We analyzed samples by chicken embryo inoculation and PCR. No avian influenza viruses were isolated. History of HPAI H5N1 shows obvious importance of Central Asian region in its spreading. The outbreaks of the H5N1 Highly Pathogenic Avian Influenza (HPAI H5N1) were reported in wild birds at the Qinghai Lake since 2005. This area seems to be key point for H5N1 avian influenza surveillance in wild birds. We did not find viruses although H5N1 cases in poultry were reported from 5 provinces of China in 2012. Annual surveillance is required for early AIV detection in this region.
基金This work was supported by the National Administration of Traditional Chinese Medicine Project(2019XZZX-LG04)Chinese Academy of Traditional Chinese Medicine Project(ZZ13-035-02)to S.L.
文摘Objective This study aimed to assess the efficacy and safety of traditional Chinese medicine,alone or in combination with oseltamivir,in patients with H1N1 Influenza.Methods In the present study,we searched the Cochrane Central Register of Controlled Trials,PUBMED,EMBASE,Chinese Biomedical Literature Database,China Science and Technology Journal Database,China National Knowledge Infrastructure Database,and WanFang Data for studies published in or before February 8,2022.Data were extracted and checked by two investigators.Review Manager 5.4 and STATA statistical software 16.0 were used for the data analysis.Results We identified 22 individual studies reporting data from 2292 individuals with H1N1 influenza.Compared with oseltamivir,the fever clearance duration[MD=-3.99,95%CI(-6.89,-1.09)]and sore throat relief time[MD=-5.39,95%CI(-10.19,-0.59)]in the intervention group of traditional Chinese medicine monotherapy or combined with oseltamivir were shorter.Maxingshigan was the primary component of Lianhuaqingwen.The subgroup analyses indicated that Maxingshigan shortened fever clearance time[MD=-3.23,95%CI(-5.60,-0.85)],and also had certain advantages in relieving sore throat[RR=-4.55,95%CI(-10.04,0.95)].However,as for the effective rate,fever duration,cough disappearance time,hospital length of stay,clinical symptoms time as well as viral shedding duration,there were no significant differences between the two groups.Besides,no serious adverse effects were reported in the included studies.Conclusion Although we couldn’t get a definitive conclusion due to the small sample sizes and high risk of bias in the included studies,most traditional Chinese medicine showed similar effects to oseltamivir in treating H1N1 influenza.Some were showed to have a statistically significant shorter time of fever clearance and sore throat remission when they were used alone or in combination with oseltamivir and were well-tolerated treatment,such as Maxingshigan.
基金supported in part by the funding from the National Natural Scientific Foundation(81370518)the National High Technology Research and Development Program of China(2015AA020924 and 2013ZX10004003)supported by a grant from the Beijing Nova Program(No.Z141107001814054)
文摘The highly pathogenic avian influenza (HPAI) H5N1 virus has caused several outbreaks in domestic poultry. Despite great efforts to control the spread of this virus, it continues to evolve and poses a substantial threat to public health because of a high mortality rate. In this study, we sequenced whole genomes of eight H5N1 avian influenza viruses isolated from domestic poultry in eastern China and compared them with those of typical influenza virus strains. Phylogenetic analyses showed that all eight genomes belonged to clade 2.3.2.1 and clade 7.2, the two main circulating clades in China. Viruses that clustered in clade 2.3.2.1 shared a high degree of homology with H5N1 isolates located in eastern Asian. Isolates that clustered in clade 7.2 were found to circulate throughout China, with an east-to-west density gradient. Pathogenicity studies in mice showed that these isolates replicate in the lungs, and clade 2.3.2.1 viruses exhibit a notably higher degree of virulence compared to clade 7.2 viruses. Our results contribute to the elucidation of the biological characterization and pathogenicity of HPAI H5N1 viruses.
基金Supported by Key Specific Program for Science and Technology of Guangdong Province (2008B020700003 A2007A020400006)~~
文摘[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.
基金Acknowledgments We thank Susan Watson for editing the manuscript and those in our laboratories who contributed to the data cited in this review. We also thank Ryo Takano for the preparation of figures. Research in HC's group is supported by the Ministry of Science and Technology, China (2004BA519A-57, 2006BAD06A05). Research in GFG's group is supported by the Ministry of Science and Technology, China (MOST, 2005CB523001 and 2006BAD06A01), the National Natural Science Foundation of China (NSFC, Grant #3059934, #30525010) and the US National Institutes of Health (U19 AI051915-05S1). Research in YS's group is supported by the Ministry of Science and Technology, China (MOST, 2005CB523006 and 2006BAD06A15), and the National Natural Science Foundation of China (NSFC, Grant #30599433). Research in YK's group is supported by National Institute of Allergy and Infectious Diseases Public Health Service research grants by CREST and ERATO (Japan Science and Technology Agency), and by grants-in-aid and a contract research fund for the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
文摘All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties.
基金supported by Special fund for scientific innovation strategy-construction of high level Academy of Agriculture Science-Distinguished Scholar(R2020PYJC001).
文摘Swine are regarded as“intermediate hosts”or“mixing vessels”of influenza viruses,capable of generating strains with pandemic potential.From 2020 to 2021,we conducted surveillance on swine H1N2 influenza(swH1N2)viruses in swine farms located in Guangdong,Yunnan,and Guizhou provinces in southern China,as well as Henan and Shandong provinces in northern China.We systematically analyzed the evolution and pathogenicity of swH1N2 isolates,and characterized their replication and transmission abilities.The isolated viruses are quadruple reassortant H1N2 viruses containing genes from pdm/09 H1N1(PB2,PB1,PA and NP genes),triple-reassortant swine(NS gene),Eurasian Avian-like(HA and M genes),and recent human H3N2(NA gene)lineages.The NA,PB2,and NP of SW/188/20 and SW/198/20 show high gene similarities to A/Guangdong/Yue Fang277/2017(H3N2).The HA gene of swH1N2 exhibits a high evolutionary rate.The five swH1N2 isolates replicate efficiently in human,canine,and swine cells,as well as in the turbinate,trachea,and lungs of mice.A/swine/Shandong/198/2020 strain efficiently replicates in the respiratory tract of pigs and effectively transmitted among them.Collectively,these current swH1N2 viruses possess zoonotic potential,highlighting the need for strengthened surveillance of swH1N2 viruses.
基金National Natural Science Foundation of China (30979144 and 81271821)
文摘Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.