期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evaluation of “C” Values to Head Loss and Water Pressure Due to Pipe Aging: Case Study of Uni-Central Sarawak 被引量:1
1
作者 King Kuok Kuok Po Chan Chiu Danny Chee Ming Ting 《Journal of Water Resource and Protection》 2020年第12期1077-1088,共12页
Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes a... Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes are deteriorating due to pipe aging. Therefore, there is a need to study the adequacy of water supply and relationships among roughness coefficient (C) values in Hazen Williams’ Equation with head loss and water pressure due to pipe aging at Uni-Central, a residential area located at Samarahan Sarawak. Investigations were carried out with Ductile Iron, Abestos Cement and Cast Iron pipes at age categories of 0 - 10 years, 10 - 30 years, 30 - 50 years, 50 - 70 years and >70 years. Six critical nodes named as A, B, C, D, E and F were identified to study the water pressure and head loss. Model was developed with InfoWorks Water Supply (WS) Pro software. The impact of pipe aging and materials to water pressure and head loss was not significant at Nodes A, B, C and F. However, max water pressure at Nodes D and F were only reaching 6.30 m and 7.30 m, respectively for all investigations. Therefore, some improvement works are required. Results also show that Asbestos Cement pipe has the least impact on the head loss and water pressure, followed by Ductile Iron pipe and lastly Cast Iron pipe. Simulation results also revealed that older pipes have higher roughness coefficients, indicated with lower “C” values, thus increase the head loss and reduce the water pressure. In contrast, as “C” values increased, head loss will be reduced and water pressure will be increased. 展开更多
关键词 infoworks Water Supply (ws) Pro Pressure Head Hazen-Williams Equation Head Loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部