期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Information compression and speckle reduction for multifrequency polarimetric SAR images based on kernel PCA 被引量:4
1
作者 Li Ying Lei Xiaogang Bai Bendu Zhang Yanning 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期493-498,共6页
Multifrequency polarimetric SAR imagery provides a very convenient approach for signal processing and acquisition of radar image. However, the amount of information is scattered in several images, and redundancies exi... Multifrequency polarimetric SAR imagery provides a very convenient approach for signal processing and acquisition of radar image. However, the amount of information is scattered in several images, and redundancies exist between different bands and polarizations. Similar to signal-polarimetric SAR image, multifrequency polarimetric SAR image is corrupted with speckle noise at the same time. A method of information compression and speckle reduction for multifrequency polarimetric SAR imagery is presented based on kernel principal component analysis (KPCA). KPCA is a nonlinear generalization of the linear principal component analysis using the kernel trick. The NASA/JPL polarimetric SAR imagery of P, L, and C bands quadpolarizations is used for illustration. The experimental results show that KPCA has better capability in information compression and speckle reduction as compared with linear PCA. 展开更多
关键词 kernel PCA multifrequency polarimetric SAR imagery information compression despeckling.
下载PDF
Early chatter identification based on optimized VMD with multi-band information fusion and compression method in robotic milling process
2
作者 Sichen CHEN Zhiqiang LIANG +5 位作者 Yuchao DU Zirui GAO Haoran ZHENG Zhibing LIU Tianyang QIU Xibin WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期464-484,共21页
Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators ... Undesirable self-excited chatter has always been a typical issue restricting the improvement of robotic milling quality and efficiency.Sensitive chatter identification based on processing signals can prompt operators to adjust the machining process and prevent chatter damage.Compared with the traditional machine tool,the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process make it more challenging to extract chatter information.This paper proposes a novel method of chatter identification using optimized variational mode decomposition(OVMD)with multi-band information fusion and compression technology(MT).During the robotic milling process,the number of decomposed modes k and the penalty coefficient a are optimized based on the dominant component of frequency scope partition and fitness of the mode center frequency.Moreover,the mayfly optimization algorithm(MA)is employed to obtain the global optimal parameter selection.In order to conquer information collection about the uncertain multiple chatter frequency bands and the band-moving of the chatter frequency in robotic milling process,MT is presented to reduce computation and extract signal characteristics.Finally,the cross entropy of the image(CEI)is proposed as the final chatter indicator to identify the chatter occurrence.The robotic milling experiments are carried out to verify the proposed method,and the results show that it can distinguish the robotic milling condition by extracting the uncertain multiple chatter frequency bands and overcome the band-moving of the chatter frequency in robotic milling process. 展开更多
关键词 Robotic milling Chatter detection Variational mode decomposition information fusion and compression Chatter featur
原文传递
k-NN Based Bypass Entropy and Mutual Information Estimation for Incremental Remote-Sensing Image Compressibility Evaluation 被引量:2
3
作者 Xijia Liu Xiaoming Tao +1 位作者 Yiping Duan Ning Ge 《China Communications》 SCIE CSCD 2017年第8期54-62,共9页
Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still... Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames. 展开更多
关键词 remote-sensing incremental image compression entropy mutual information
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部