Cybersecurity is therefore one of the most important elements of security in developed countries. Especially since there is an overall trend towards cybersecurity in all aspects of life, I have found that the idea of ...Cybersecurity is therefore one of the most important elements of security in developed countries. Especially since there is an overall trend towards cybersecurity in all aspects of life, I have found that the idea of cybersecurity is based on protecting critical facilities: The nation’s information infrastructure. Information systems, including e-government management systems, are managed by key state agencies. As with economic, scientific, commercial, and other systems, threats are threats to a nation’s national security. We have therefore found that many countries are preparing institutions capable of integrating cybersecurity into protection, development, and information security. This concept has become the most important concern of developed countries, which have secured all scientific possibilities and systems to achieve it. The electronic information network has become an integral part of today’s daily lives in all places. In addition to personal uses, digital information is used, processed, stored, and shared. As this information increases and spreads, we have found that its protection has become more vital and has an effective impact on national security and technical progress.展开更多
The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Tel...The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.展开更多
This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering...This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
With the skyrocketing development of technologies,there are many issues in information security quantitative evaluation(ISQE)of complex heterogeneous information systems(CHISs).The development of CHIS calls for an ISQ...With the skyrocketing development of technologies,there are many issues in information security quantitative evaluation(ISQE)of complex heterogeneous information systems(CHISs).The development of CHIS calls for an ISQE model based on security-critical components to improve the efficiency of system security evaluation urgently.In this paper,we summarize the implication of critical components in different filed and propose a recognition algorithm of security-critical components based on threat attack tree to support the ISQE process.The evaluation model establishes a framework for ISQE of CHISs that are updated iteratively.Firstly,with the support of asset identification and topology data,we sort the security importance of each asset based on the threat attack tree and obtain the security-critical components(set)of the CHIS.Then,we build the evaluation indicator tree of the evaluation target and propose an ISQE algorithm based on the coefficient of variation to calculate the security quality value of the CHIS.Moreover,we present a novel indicator measurement uncertainty aiming to better supervise the performance of the proposed model.Simulation results show the advantages of the proposed algorithm in the evaluation of CHISs.展开更多
The development of the Internet of Things has facilitated the rapid development of various industries.With the improvement in people’s living standards,people’s health requirements are steadily improving.However,owi...The development of the Internet of Things has facilitated the rapid development of various industries.With the improvement in people’s living standards,people’s health requirements are steadily improving.However,owing to the scarcity of medical and health care resources in some areas,the demand for remote surgery has gradually increased.In this paper,we investigate remote surgery in the healthcare environment.Surgeons can operate robotic arms to perform remote surgery for patients,which substantially facilitates successful surgeries and saves lives.Recently,Kamil et al.proposed a secure protocol for surgery in the healthcare environment.However,after cryptanalyzing their protocol,we deduced that their protocols are vulnerable to temporary value disclosure and insider attacks.Therefore,we design an improved authentication and key agreement protocol for remote surgeries in the healthcare environment.Accordingly,we adopt the real or random(ROR)model and an automatic verification tool Proverif to verify the security of our protocol.Via security analysis and performance comparison,it is confirmed that our protocol is a relatively secure protocol.展开更多
With the rapid development of network technology, the meaning of layers and attributes in respect of information system security must be extended based on the understanding of the concept of information system securit...With the rapid development of network technology, the meaning of layers and attributes in respect of information system security must be extended based on the understanding of the concept of information system security. The layering model (LM) of information system security and the five-attribute model (FAM) based on security factors were put forward to perfect the description and modeling of the information system security framework. An effective framework system of risk calculation and assessment was proposed, which is based on FAM.展开更多
In order to solve the problem of howa firm makes an optimal choice in developing information systems when faced with the following three modes: development by its own efforts, outsourcing them to a managed security se...In order to solve the problem of howa firm makes an optimal choice in developing information systems when faced with the following three modes: development by its own efforts, outsourcing them to a managed security service provider( MSSP) and cooperating with the MSSP, the firm 's optimal investment strategies are discussed by modeling and analyzing the maximum expected utility in the above cases under the condition that the firm plays games with an attacker.The results showthat the best choice for a firm is determined by the reasonable range of the cooperative development coefficient and applicable conditions. When the cooperative development coefficient is large, it is more rational for the firm to cooperate with the MSSP to develop the information system. When the cooperative development coefficient is small, it is more rational for the firm to develop the information system by its own efforts. It also shows that the attacker's maximum expected utility increases with the increase in the attacker 's breach probability and cost coefficient when the cooperative development coefficient is small. On the contrary, it decreases when the cooperative development coefficient is large.展开更多
Currently computing information systems have entered a new stage and the security of systems is more and more serious, and the research on system security is developing in depth. This paper discusses neuro-computing a...Currently computing information systems have entered a new stage and the security of systems is more and more serious, and the research on system security is developing in depth. This paper discusses neuro-computing applications in security of network information systems.展开更多
Most user authentication mechanisms of cloud systems depend on the credentials approach in which a user submits his/her identity through a username and password.Unfortunately,this approach has many security problems b...Most user authentication mechanisms of cloud systems depend on the credentials approach in which a user submits his/her identity through a username and password.Unfortunately,this approach has many security problems because personal data can be stolen or recognized by hackers.This paper aims to present a cloud-based biometric authentication model(CBioAM)for improving and securing cloud services.The research study presents the verification and identification processes of the proposed cloud-based biometric authentication system(CBioAS),where the biometric samples of users are saved in database servers and the authentication process is implemented without loss of the users’information.The paper presents the performance evaluation of the proposed model in terms of three main characteristics including accuracy,sensitivity,and specificity.The research study introduces a novel algorithm called“Bio_Authen_as_a_Service”for implementing and evaluating the proposed model.The proposed system performs the biometric authentication process securely and preserves the privacy of user information.The experimental result was highly promising for securing cloud services using the proposed model.The experiments showed encouraging results with a performance average of 93.94%,an accuracy average of 96.15%,a sensitivity average of 87.69%,and a specificity average of 97.99%.展开更多
All modern computer users need to be concerned about information system security (individuals and organisations). Many businesses established various security structures to protect information system security from har...All modern computer users need to be concerned about information system security (individuals and organisations). Many businesses established various security structures to protect information system security from harmful occurrences by implementing security procedures, processes, policies, and information system security organisational structures to ensure data security. Despite all the precautions, information security remains a disaster in Tanzania’s learning institutions. The fundamental issue appears to be a lack of awareness of crucial information security factors. Various companies have different security issues due to differences in ICT infrastructure, implementations, and usage. The study focuses on identifying information system security threats and vulnerabilities in public higher learning institutions in Tanzania, particularly the Institute of Accountancy Arusha (IAA). The study involved all employees of IAA, academics, and other supporting staff, which totalled 302, and the sample size was 170. The study utilised a descriptive research design, where the quantitative methodology was used through a five-point Likert scale questionnaire, and found that key factors that affect the security of information systems at IAA include human factors, policy-related issues, work environment and demographic factors. The study proposed regular awareness and training programs;an increase in women’s awareness of information system security;proper policy creation and reviews every 4 years;promote actions that lessen information system security threats and vulnerabilities, and the creation of information system security policy documents independently from ICT policy.展开更多
Ecological security defined as the creation of a condition where the physical surroundings of a community provide for the needs of its inhabitants without diminishing its natural stock,which is important for regional ...Ecological security defined as the creation of a condition where the physical surroundings of a community provide for the needs of its inhabitants without diminishing its natural stock,which is important for regional security and social stability.In recent years,land use patterns in the Changbai Mountain region have changed significantly with intensive human activities,and consequently led to increasing problems in regional ecological security.Based on the Pressure-State-Impact-Response(PSIR) model and the mathematical method of catastrophe progression supported by geographical information system(GIS),the ecological security situation of the study area under land use and cover change(LUCC) was evaluated.The results indicated that the ecological security in Changbai Mountain region varied nonlinearly,which got better from 1990 to 2000 but became worse from 2000 to 2007,the ecological security levels in Changbai Mountain region were mainly medium and medium to low during the past 17 years,with higher values of Ecological Security Index(ESI) in the central region and lower values in the east and west,the ecological security situation was more serious in the settlements and river valleys,where the LUCC was most remarkable.展开更多
With the increasing demand for information security,traditional single-factor authentication technology can no longer meet security requirements.To this end,this paper proposes a Universal Serial Bus(USB)Key hardware ...With the increasing demand for information security,traditional single-factor authentication technology can no longer meet security requirements.To this end,this paper proposes a Universal Serial Bus(USB)Key hardware and software system based on a two-factor authentication protocol,aiming to improve the security and reliability of authentication.This paper first analyzes the current status and technical principles of USB Key-related research domestically and internationally and designs a two-factor authentication protocol that combines impact/response authentication and static password authentication.The system consists of a host computer and a USB Key device.The host computer interacts with the USB Key through a graphical user interface.The Secure Hash Algorithm 1(SHA-1)and MySQL database are used to implement the authentication function.Experimental results show that the designed two-factor authentication protocol can effectively prevent replay attacks and information tampering,and improve the security of authentication.If the corresponding USB Key is not inserted,the system will prompt that the device is not found.Once the USB Key is inserted,user identity is confirmed through two-factor verification,which includes impact/response authentication and static password authentication.展开更多
Education 4.0 is being authorized more and more by the design of artificial intelligence(AI)techniques.Higher education institutions(HEI)have started to utilize Internet technologies to improve the quality of the serv...Education 4.0 is being authorized more and more by the design of artificial intelligence(AI)techniques.Higher education institutions(HEI)have started to utilize Internet technologies to improve the quality of the service and boost knowledge.Due to the unavailability of information technology(IT)infrastructures,HEI is vulnerable to cyberattacks.Biometric authentication can be used to authenticate a person based on biological features such as face,fingerprint,iris,and so on.This study designs a novel search and rescue optimization with deep learning based learning authentication technique for cybersecurity in higher education institutions,named SRODLLAC technique.The proposed SRODL-LAC technique aims to authenticate the learner/student in HEI using fingerprint biometrics.Besides,the SRODLLACtechnique designs a median filtering(MF)based preprocessing approach to improving the quality of the image.In addition,the Densely Connected Networks(DenseNet-77)model is applied for the extraction of features.Moreover,search and rescue optimization(SRO)algorithm with deep neural network(DNN)model is utilized for the classification process.Lastly,template matching process is done for fingerprint identification.A wide range of simulation analyses is carried out and the results are inspected under several aspects.The experimental results reported the effective performance of the SRODL-LAC technique over the other methodologies.展开更多
With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In t...With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.展开更多
In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured L...In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes.展开更多
Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via vario...Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via various channels of remote communication, the most common being Virtual Private Networks (VPNs). The demand for remote access is on the rise, especially during the Covid-19 pandemic, and will continue to increase as most organizations are re-structuring to make telecommuting a permanent part of their mode of operation. Employee mobility, while presenting organizations with some advantages, comes with the associated risk of exposing corporate cyber assets to attackers. The remote user and the remote connectivity technology present some vulnerabilities which can be exploited by any threat agent to violate the confidentiality, integrity and availability (CIA) dimensions of these cyber assets. So, how are users and remote devices authenticated? To what extent is the established connection secured? With employee mobility on the rise, it is necessary to analyze the user authentication role since the mobile employee is not under the monitoring radar of the organization, and the environment from which the mobile employee connects may be vulnerable. In this study, an experiment was setup to ascertain the user authentication roles. The experiment showed the process of 2FA in user authentication and it proved to be an effective means of improving user authentication during remote access. This was depicted via the use of what the user has (mobile phone/soft-token) as a second factor in addition to what the user knows, i.e. password. This authentication method overcomes the security weaknesses inherent in single-factor user authentication via the use of password only. However, the results also showed that though 2FA user authentication ensures security, the remote devices could exhibit further vulnerabilities and pose serious risks to the organization. Thus, a varied implementation was recommended to further enhance the security of remote access communication with regards to the remote user authentication.展开更多
System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation ai...System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation air operations,users accessing different authentication domains in the SWIM system have problems with the validity,security,and privacy of SWIM-shared data.In order to solve these problems,this paper proposes a SWIM crossdomain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication.The scheme uses a consistent hash algorithm with virtual nodes in combination with a cluster of authentication centers in the SWIM consortium blockchain architecture to synchronize the user’s authentication mapping relationships between authentication domains.The virtual authentication nodes are mapped separately using different services provided by SWIM to guarantee the partitioning of the consistent hash ring on the consortium blockchain.According to the dynamic change of user’s authentication requests,the nodes of virtual service authentication can be added and deleted to realize the dynamic load balancing of cross-domain authentication of different services.Security analysis shows that this protocol can resist network attacks such as man-in-the-middle attacks,replay attacks,and Sybil attacks.Experiments show that this scheme can reduce the redundant authentication operations of identity information and solve the problems of traditional cross-domain authentication with single-point collapse,difficulty in expansion,and uneven load.At the same time,it has better security of information storage and can realize the cross-domain authentication requirements of SWIM users with low communication costs and system overhead.KEYWORDS System-wide information management(SWIM);consortium blockchain;consistent hash;cross-domain authentication;load balancing.展开更多
Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technologic...Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technological revolution is poised to have a profound impact on the world.Quantum information technology encompasses both quantum computing and the transmission of quantum information.This article aims to integrate quantum information technology with international security concerns,exploring its implications for international security and envisioning its groundbreaking significance.展开更多
Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes metho...Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.展开更多
文摘Cybersecurity is therefore one of the most important elements of security in developed countries. Especially since there is an overall trend towards cybersecurity in all aspects of life, I have found that the idea of cybersecurity is based on protecting critical facilities: The nation’s information infrastructure. Information systems, including e-government management systems, are managed by key state agencies. As with economic, scientific, commercial, and other systems, threats are threats to a nation’s national security. We have therefore found that many countries are preparing institutions capable of integrating cybersecurity into protection, development, and information security. This concept has become the most important concern of developed countries, which have secured all scientific possibilities and systems to achieve it. The electronic information network has become an integral part of today’s daily lives in all places. In addition to personal uses, digital information is used, processed, stored, and shared. As this information increases and spreads, we have found that its protection has become more vital and has an effective impact on national security and technical progress.
基金supported through Universiti Sains Malaysia(USM)and the Ministry of Higher Education Malaysia providing the research grant,Fundamental Research Grant Scheme(FRGS-Grant No.FRGS/1/2020/TK0/USM/02/1).
文摘The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.
文摘This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金supported in part by the National Key R&D Program of China under Grant 2019YFB2102400,2016YFF0204001in part by the BUPT Excellent Ph.D.Students Foundation under Grant CX2019117.
文摘With the skyrocketing development of technologies,there are many issues in information security quantitative evaluation(ISQE)of complex heterogeneous information systems(CHISs).The development of CHIS calls for an ISQE model based on security-critical components to improve the efficiency of system security evaluation urgently.In this paper,we summarize the implication of critical components in different filed and propose a recognition algorithm of security-critical components based on threat attack tree to support the ISQE process.The evaluation model establishes a framework for ISQE of CHISs that are updated iteratively.Firstly,with the support of asset identification and topology data,we sort the security importance of each asset based on the threat attack tree and obtain the security-critical components(set)of the CHIS.Then,we build the evaluation indicator tree of the evaluation target and propose an ISQE algorithm based on the coefficient of variation to calculate the security quality value of the CHIS.Moreover,we present a novel indicator measurement uncertainty aiming to better supervise the performance of the proposed model.Simulation results show the advantages of the proposed algorithm in the evaluation of CHISs.
文摘The development of the Internet of Things has facilitated the rapid development of various industries.With the improvement in people’s living standards,people’s health requirements are steadily improving.However,owing to the scarcity of medical and health care resources in some areas,the demand for remote surgery has gradually increased.In this paper,we investigate remote surgery in the healthcare environment.Surgeons can operate robotic arms to perform remote surgery for patients,which substantially facilitates successful surgeries and saves lives.Recently,Kamil et al.proposed a secure protocol for surgery in the healthcare environment.However,after cryptanalyzing their protocol,we deduced that their protocols are vulnerable to temporary value disclosure and insider attacks.Therefore,we design an improved authentication and key agreement protocol for remote surgeries in the healthcare environment.Accordingly,we adopt the real or random(ROR)model and an automatic verification tool Proverif to verify the security of our protocol.Via security analysis and performance comparison,it is confirmed that our protocol is a relatively secure protocol.
文摘With the rapid development of network technology, the meaning of layers and attributes in respect of information system security must be extended based on the understanding of the concept of information system security. The layering model (LM) of information system security and the five-attribute model (FAM) based on security factors were put forward to perfect the description and modeling of the information system security framework. An effective framework system of risk calculation and assessment was proposed, which is based on FAM.
基金The National Natural Science Foundation of China(No.71371050)
文摘In order to solve the problem of howa firm makes an optimal choice in developing information systems when faced with the following three modes: development by its own efforts, outsourcing them to a managed security service provider( MSSP) and cooperating with the MSSP, the firm 's optimal investment strategies are discussed by modeling and analyzing the maximum expected utility in the above cases under the condition that the firm plays games with an attacker.The results showthat the best choice for a firm is determined by the reasonable range of the cooperative development coefficient and applicable conditions. When the cooperative development coefficient is large, it is more rational for the firm to cooperate with the MSSP to develop the information system. When the cooperative development coefficient is small, it is more rational for the firm to develop the information system by its own efforts. It also shows that the attacker's maximum expected utility increases with the increase in the attacker 's breach probability and cost coefficient when the cooperative development coefficient is small. On the contrary, it decreases when the cooperative development coefficient is large.
基金This project was supported by the Foundation of State Key Lab for Software Engineering at Wuhan University.
文摘Currently computing information systems have entered a new stage and the security of systems is more and more serious, and the research on system security is developing in depth. This paper discusses neuro-computing applications in security of network information systems.
基金funding for this study from King Khalid University,Grant Number(GRP-35–40/2019).
文摘Most user authentication mechanisms of cloud systems depend on the credentials approach in which a user submits his/her identity through a username and password.Unfortunately,this approach has many security problems because personal data can be stolen or recognized by hackers.This paper aims to present a cloud-based biometric authentication model(CBioAM)for improving and securing cloud services.The research study presents the verification and identification processes of the proposed cloud-based biometric authentication system(CBioAS),where the biometric samples of users are saved in database servers and the authentication process is implemented without loss of the users’information.The paper presents the performance evaluation of the proposed model in terms of three main characteristics including accuracy,sensitivity,and specificity.The research study introduces a novel algorithm called“Bio_Authen_as_a_Service”for implementing and evaluating the proposed model.The proposed system performs the biometric authentication process securely and preserves the privacy of user information.The experimental result was highly promising for securing cloud services using the proposed model.The experiments showed encouraging results with a performance average of 93.94%,an accuracy average of 96.15%,a sensitivity average of 87.69%,and a specificity average of 97.99%.
文摘All modern computer users need to be concerned about information system security (individuals and organisations). Many businesses established various security structures to protect information system security from harmful occurrences by implementing security procedures, processes, policies, and information system security organisational structures to ensure data security. Despite all the precautions, information security remains a disaster in Tanzania’s learning institutions. The fundamental issue appears to be a lack of awareness of crucial information security factors. Various companies have different security issues due to differences in ICT infrastructure, implementations, and usage. The study focuses on identifying information system security threats and vulnerabilities in public higher learning institutions in Tanzania, particularly the Institute of Accountancy Arusha (IAA). The study involved all employees of IAA, academics, and other supporting staff, which totalled 302, and the sample size was 170. The study utilised a descriptive research design, where the quantitative methodology was used through a five-point Likert scale questionnaire, and found that key factors that affect the security of information systems at IAA include human factors, policy-related issues, work environment and demographic factors. The study proposed regular awareness and training programs;an increase in women’s awareness of information system security;proper policy creation and reviews every 4 years;promote actions that lessen information system security threats and vulnerabilities, and the creation of information system security policy documents independently from ICT policy.
基金supported by the National Key Technology R&D Program of China under Grant No.2013BAK05B01the National Natural Science Foundation of China under Grant No.41371495+1 种基金the National Grand Fundamental Research 973 Program of China under Grant No.2010CB951102the National Key Technology R&D Program of China under Grant No.2011BAD32B00-04
文摘Ecological security defined as the creation of a condition where the physical surroundings of a community provide for the needs of its inhabitants without diminishing its natural stock,which is important for regional security and social stability.In recent years,land use patterns in the Changbai Mountain region have changed significantly with intensive human activities,and consequently led to increasing problems in regional ecological security.Based on the Pressure-State-Impact-Response(PSIR) model and the mathematical method of catastrophe progression supported by geographical information system(GIS),the ecological security situation of the study area under land use and cover change(LUCC) was evaluated.The results indicated that the ecological security in Changbai Mountain region varied nonlinearly,which got better from 1990 to 2000 but became worse from 2000 to 2007,the ecological security levels in Changbai Mountain region were mainly medium and medium to low during the past 17 years,with higher values of Ecological Security Index(ESI) in the central region and lower values in the east and west,the ecological security situation was more serious in the settlements and river valleys,where the LUCC was most remarkable.
基金funded by the College-level Characteristic Teaching Material Project(Project No.20220119Z0221)The College Teaching Incubation Project(Project No.20220120Z0220)+3 种基金The Ministry of Education Industry-University Cooperation Collaborative Education Project(Project No.20220163H0211)The Central Universities Basic Scientific Research Fund(Project No.3282024009,20230051Z0114,and 20230050Z0114)The Beijing Higher Education“Undergraduate Teaching Reform and Innovation Project”(Project No.20220121Z0208 and 202110018002)The College Discipline Construction Project(Project No.20230007Z0452 and 20230010Z0452)。
文摘With the increasing demand for information security,traditional single-factor authentication technology can no longer meet security requirements.To this end,this paper proposes a Universal Serial Bus(USB)Key hardware and software system based on a two-factor authentication protocol,aiming to improve the security and reliability of authentication.This paper first analyzes the current status and technical principles of USB Key-related research domestically and internationally and designs a two-factor authentication protocol that combines impact/response authentication and static password authentication.The system consists of a host computer and a USB Key device.The host computer interacts with the USB Key through a graphical user interface.The Secure Hash Algorithm 1(SHA-1)and MySQL database are used to implement the authentication function.Experimental results show that the designed two-factor authentication protocol can effectively prevent replay attacks and information tampering,and improve the security of authentication.If the corresponding USB Key is not inserted,the system will prompt that the device is not found.Once the USB Key is inserted,user identity is confirmed through two-factor verification,which includes impact/response authentication and static password authentication.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPRC-154-611-2020)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Education 4.0 is being authorized more and more by the design of artificial intelligence(AI)techniques.Higher education institutions(HEI)have started to utilize Internet technologies to improve the quality of the service and boost knowledge.Due to the unavailability of information technology(IT)infrastructures,HEI is vulnerable to cyberattacks.Biometric authentication can be used to authenticate a person based on biological features such as face,fingerprint,iris,and so on.This study designs a novel search and rescue optimization with deep learning based learning authentication technique for cybersecurity in higher education institutions,named SRODLLAC technique.The proposed SRODL-LAC technique aims to authenticate the learner/student in HEI using fingerprint biometrics.Besides,the SRODLLACtechnique designs a median filtering(MF)based preprocessing approach to improving the quality of the image.In addition,the Densely Connected Networks(DenseNet-77)model is applied for the extraction of features.Moreover,search and rescue optimization(SRO)algorithm with deep neural network(DNN)model is utilized for the classification process.Lastly,template matching process is done for fingerprint identification.A wide range of simulation analyses is carried out and the results are inspected under several aspects.The experimental results reported the effective performance of the SRODL-LAC technique over the other methodologies.
基金This work has received funding from National Natural Science Foundation of China(No.42275157).
文摘With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.
文摘In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes.
文摘Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via various channels of remote communication, the most common being Virtual Private Networks (VPNs). The demand for remote access is on the rise, especially during the Covid-19 pandemic, and will continue to increase as most organizations are re-structuring to make telecommuting a permanent part of their mode of operation. Employee mobility, while presenting organizations with some advantages, comes with the associated risk of exposing corporate cyber assets to attackers. The remote user and the remote connectivity technology present some vulnerabilities which can be exploited by any threat agent to violate the confidentiality, integrity and availability (CIA) dimensions of these cyber assets. So, how are users and remote devices authenticated? To what extent is the established connection secured? With employee mobility on the rise, it is necessary to analyze the user authentication role since the mobile employee is not under the monitoring radar of the organization, and the environment from which the mobile employee connects may be vulnerable. In this study, an experiment was setup to ascertain the user authentication roles. The experiment showed the process of 2FA in user authentication and it proved to be an effective means of improving user authentication during remote access. This was depicted via the use of what the user has (mobile phone/soft-token) as a second factor in addition to what the user knows, i.e. password. This authentication method overcomes the security weaknesses inherent in single-factor user authentication via the use of password only. However, the results also showed that though 2FA user authentication ensures security, the remote devices could exhibit further vulnerabilities and pose serious risks to the organization. Thus, a varied implementation was recommended to further enhance the security of remote access communication with regards to the remote user authentication.
基金funded by the National Natural Science Foundation of China(62172418)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U2133203)+1 种基金the Education Commission Scientific Research Project of Tianjin China(2022KJ081)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology(SH2021111907).
文摘System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation air operations,users accessing different authentication domains in the SWIM system have problems with the validity,security,and privacy of SWIM-shared data.In order to solve these problems,this paper proposes a SWIM crossdomain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication.The scheme uses a consistent hash algorithm with virtual nodes in combination with a cluster of authentication centers in the SWIM consortium blockchain architecture to synchronize the user’s authentication mapping relationships between authentication domains.The virtual authentication nodes are mapped separately using different services provided by SWIM to guarantee the partitioning of the consistent hash ring on the consortium blockchain.According to the dynamic change of user’s authentication requests,the nodes of virtual service authentication can be added and deleted to realize the dynamic load balancing of cross-domain authentication of different services.Security analysis shows that this protocol can resist network attacks such as man-in-the-middle attacks,replay attacks,and Sybil attacks.Experiments show that this scheme can reduce the redundant authentication operations of identity information and solve the problems of traditional cross-domain authentication with single-point collapse,difficulty in expansion,and uneven load.At the same time,it has better security of information storage and can realize the cross-domain authentication requirements of SWIM users with low communication costs and system overhead.KEYWORDS System-wide information management(SWIM);consortium blockchain;consistent hash;cross-domain authentication;load balancing.
文摘Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technological revolution is poised to have a profound impact on the world.Quantum information technology encompasses both quantum computing and the transmission of quantum information.This article aims to integrate quantum information technology with international security concerns,exploring its implications for international security and envisioning its groundbreaking significance.
文摘Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.