期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Infrared Measurements of Heating and Cooling Emissions in Aluminium and Steel during Tensile and Cyclic Loading 被引量:1
1
作者 黄毅 G.E.Hicho R.J.Fields 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第2期106-111,共6页
In this paper,a new thermographic method based on the measurement of infrared emission(IR) from the surface of loaded body has been used to study the cooling and heating in aluminium and steel specimens under tensile ... In this paper,a new thermographic method based on the measurement of infrared emission(IR) from the surface of loaded body has been used to study the cooling and heating in aluminium and steel specimens under tensile and cyclic loading.A typical test procedure using infrared to measure thermographic changes near the crack tip and the immediate surrounding area is described.In addi- tion,a procedure for determining the stress concen- tration near the crack tip is also presented.Results are given for thermoelastic cooling phenomenon of metals during the tensile process and IR cooling and IR heating emissions at the crack tip during cyclic loading.Attention is drawn to the multiple phenomenon of IR cooling emission in the received signal as the applied load range increases beyond the elastic limit of both metals.A new application of the IR technique to the determination of the po- sition of crack tip during cyclic loading is also pres- ented. 展开更多
关键词 thermoelastic effect stress concentration elastic-plastic deformation infrared emission
下载PDF
Unidentified Infrared Discrete Emission Bands 被引量:1
2
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2022年第2期243-253,共11页
Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting ... Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting materials is unknown. The main infrared features occur around peaks at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μm with the photon’s rest energy at the peaks 0.376, 0.200, 0.161, 0.144, 0.111, and 0.098 eV, respectively. The UIB emission phenomenon has been studied for about forty five years. The prevailing hypothesis is that the materials responsible for UIB are polycyclic aromatic hydrocarbon (PAH) molecules. PAHs are thought to be one of the main forms in which carbon exists in space. And yet, not a single member of this group of compounds had been identified in space definitively until now [1]. In frames of Hypersphere World-Universe Model (WUM), we introduced Dark Matter (DM) particles, named DIONs, with the rest energy 0.199 eV and an energy density of 68.8% of the total energy density of the World. DIONs compose Outer shells of DM Supercluster’s Cores—the main objects of the World [2]. In this paper, we give an explanation of UIB emission based on the self-annihilation of DM particles DIONs and biDIONs (DIONs pairs) with a rest energy about 0.38 eV that depends on the binding energy. To the best of our knowledge, WUM is the only cosmological model in existence that is consistent with UIB emission phenomenon. 展开更多
关键词 Hypersphere World-Universe Model Law of Energy Conservation Interstellar Media Dark Matter Particles Self-annihilation Unidentified infrared emission Bands
下载PDF
Lightweight Dual‑Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption‑Dominant Electromagnetic Interference Shielding 被引量:1
3
作者 Zhonglei Ma Ruochu Jiang +8 位作者 Jiayao Jing Songlei Kang Li Ma Kefan Zhang Junxian Li Yu Zhang Jianbin Qin Shuhuan Yun Guangcheng Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期38-55,共18页
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig... Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics. 展开更多
关键词 Segregated nanocomposite foams Microcellular structures infrared stealth EMI shielding Low infrared emissivity
下载PDF
A thin radar-infrared stealth-compatible structure:Design,fabrication,and characterization 被引量:9
4
作者 田浩 刘海韬 程海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期333-338,共6页
A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed st... A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed stealth-compatible structure consists of metallic frequency selective surface (MFSS), resistive frequency selective surface (RFSS), and metal backing from the top down, and it is only 2. l-mm thick. The MFSS is made up of some divided low infrared emissivity metal copper films, and the RFSS consists of a capacitive array of square resistive patches. They are placed close together, working as an admittance sheet because of a mutual influence between them, and the equivalent admittance sheet greatly reduces the thickness of the whole structure. The proposed stealth-compatible structure is verified both by simulations and by experimental results. These results indicate that our proposed stealth-compatible structure has potential applications in stealth fields. 展开更多
关键词 radar-infrared stealth-compatible structure absorbing property infrared emissivity
下载PDF
Preparation and Characterization of High Infrared Emissivity Mn-doped NCO Spinel Composites 被引量:3
5
作者 邹隽 DONG Shurong +2 位作者 GAO Junhua WANG Hongfu 程旭东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1265-1270,共6页
NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized b... NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The TG-DSC curves showed that the appropriate baking temperature for Mn-doped NCO spinel preparation was approximately 1 320℃.X-ray diffraction patterns exhibited the formation of NCO spinel with Fd-3m space group.Valence state of the Mn ions was determined from 2p and 3s X-ray photoelectron spectra.Manganese ions were mostly in divalent and trivalent states,and the ratio of Mn^2+/Mn^3+was 0.78-0.98.Fourier transform infrared spectroscopy(FTIR)was used to analyze the spectral emissivity of Mn doped NCO spinel.It was revealed that the infrared emissivity of Mn-doped NCO spinel in 1.8-5μm could be significantly enhanced with increasing content of Mn^2+,reaching as high as 0.9398.Mn-doped NCO spinel showed excellent radiation performance and good prospect in high emissivity applications in the temperature range of 800-1 200℃. 展开更多
关键词 NCO infrared emissivity Mn doped SPINEL XPS
下载PDF
Preparation and infrared emissivities of alkali metal doped ZnO powders 被引量:1
6
作者 李会会 黄云霞 +2 位作者 李智敏 姚银华 张淑敏 《Journal of Central South University》 SCIE EI CAS 2014年第9期3449-3455,共7页
Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were i... Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities. 展开更多
关键词 infrared emissivity alkali metal crystalline quality optical band-gap ZnO powders
下载PDF
Infrared emissivities of Mn,Co co-doped ZnO powders 被引量:1
7
作者 姚银华 曹全喜 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期263-268,共6页
Infrared emissivities of Zn0.99-xMn0.01CoxO (x = 0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption ... Infrared emissivities of Zn0.99-xMn0.01CoxO (x = 0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption spectra, and infrared emissivities are studied by XRD, SEM, UV spectrophotometer, and an IR-2 dual-band infrared emissometer in a range of 8 μm-14 μm. Doped ZnO still has a wurtzite structure, and no peaks of other phases originating from impurities are detected. The optical band-gap decreases as the Co content and calcination temperature ascend, and of which the smallest optical band gap is 2.19 eV. The lowest infrared emissivity, 0.754, is observed in Zn0.98Mn0.01Co0.01O with the increase in Co concentration. The infrared emissivity experiences fluctuations as the calcination temperature increases, and its minimum value is 0.762 at 1100 ℃. 展开更多
关键词 co-doped ZnO optical band gap infrared emissivity solid-state reaction
下载PDF
Infrared Thermochromic Properties of VO_2 Thin Films Prepared through Aqueous Sol-gel Process 被引量:2
8
作者 刘东青 程海峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期861-865,共5页
The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 n... The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 nm VO2 thin films in the 7.5 μm-14 μm region were discussed. The derived VO2 thin film samples were characterized by Raman, XRD, XPS, AFM, SEM, and DSC. The resistance and infrared emissivity of VO2 thin films under different temperature were measured, and the thermal images of films were obtained using infrared imager. The results show that the VO2 thin film annealed at 550 ℃ for 10 hours through aqueous sol-gel process is pure and uniform. The 900 nm VO2 thin film exhibits better IR thermochromic property than the 400 nm VO2 thin film. The resistance of 900 nm VO2 film can change by 4 orders of magnitude and the emissivity can change by 0.6 during the phase transition, suggesting the outstanding IR thermochromic property. The derived VO2 thin film can control its infrared radiation intensity and lower its apparent temperature actively when the real temperature increases, which may be applied in the field of energy saving, thermal control and camouflage. 展开更多
关键词 vanadium dioxide thermochromism infrared emissivity sol-gel thin film
下载PDF
Infrared emissivity of transition elements doped ZnO
9
作者 姚银华 曹全喜 《Journal of Central South University》 SCIE EI CAS 2013年第3期592-598,共7页
Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzit... Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzite structure of the prepared samples. No peaks of other phases arising from impurities are detected in Mn- and Co-doped ZnO, hut the peaks of ZnFe204 and NiO are observed in Zno.99Feo.010 and Zno.99Nio.o10. The SEM observations indicate that with larger grain sizes than those of Zn0.99Feo.010 and Zno.99Ni0.010, Co-doped ZnO exhibits smooth grain surfaces. The infrared absorption spectra show that infrared absorptions related to oxygen in Zn0.99M0.010 are much stronger than those in Co-doped ZnO. Co ions are dissolved into the ZnO lattice with Co2+ state from XPS spectra analysis. The infrared emissivity results imply that the emissivity of Zno.99Ni0.010 is the highest (0.829) and that of Zno.99C00.010 is the lowest (0.784) at 1 200 ℃. The emissivity of Zno.99Co0.010 decreases to the minimum (0.752) at 1 150 ℃ and then increases with growing calcination temperature. As the Co doping content grows, the emissivity of Co-doped ZnO calcined at 1 200 ℃ falls to 0.758 in the molar fraction of 3% and then ascends. 展开更多
关键词 solid-state reaction transition element doping infrared absorption spectrum infrared emissivity
下载PDF
Current Status and Prospect of Infrared Radiation Ceramics for Energy-saving Applications in High Temperature Furnaces
10
作者 YE Jianke WANG Feng LI Jiangtao 《China's Refractories》 CAS 2015年第3期12-17,共6页
Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature ... Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature furnaces and kilns,the use of high emissivity materials is considered to be an effective route to increase their thermal efficiency by enhancing heat transfer.Most materials with high refractoriness and superior chemical stability have weak infrared absorption and radiation properties;however,their emissivity in infrared regions(1 —25 μm) could be effectively increased by ion doping.This is attributed to three main mechanisms:1) distortion of the crystal lattice;2) increase of free carrier absorption; 3) formation of impurity energy level.In this paper,the development and advancement of various material systems with high emissivity including non-oxides and oxide based ceramics were reviewed.It is also suggested that the establishment of evaluation models or instruments for energy savings would be beneficial to design and application of high emissivity materials in various high-temperature environment.Furthermore,more efforts should be made on durability of high emissivity materials at high service temperatures and on the standardization of testing methods for emissivity. 展开更多
关键词 infrared radiation ceramics emission property preparation
下载PDF
Dual Anthropogenic Origin of Global Warming through GHGs and IR Radiation Emissions from Artificialized Soils
11
作者 Romdhane Ben Slama 《Journal of Atmospheric Science Research》 2021年第4期36-41,共6页
This paper contributes to explain the global warming instead of"giving up"and thinking about passively adapting to climate change or global warming.It makes more sense to tackle what creates the greenhouse e... This paper contributes to explain the global warming instead of"giving up"and thinking about passively adapting to climate change or global warming.It makes more sense to tackle what creates the greenhouse effect and contributes to global warming.The greenhouse effect is not only due to GHGs emissions,but also to the excess IR radiation emitted during the day,by artificial surfaces,following the absorption of solar radiation.The phenomenon should be compared to that of radiative forcing well known by climatologists and which makes the link between atmospheric pollution and the density of heat fluxes stopped by the atmosphere inducing global warming.It becomes clear that type an equation here.The surplus CO2 and IR radiation emissions influence global warming,not to mention the direct part of the heat released by the combustion of fossil fuels and even renewable(wood fires,biogas,friction of wind turbine propellers with the air). 展开更多
关键词 Greenhouse gazes Global warming infrared radiation emission Artificilised soils
下载PDF
Structural and Optical Performance of GaN Thick Film Grown by HVPE
12
作者 魏同波 马平 +5 位作者 段瑞飞 王军喜 李晋闽 刘喆 林郭强 曾一平 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第1期19-23,共5页
Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these Ga... Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these GaN epitaxial films. It was found that stepped/terraced structures appeared on the film surface,which were indicative of a nearly step-flow mode of growth for the HVPE GaN despite the high growth rate. A few hexagonal pits appeared on the surface, which have strong light emission. After being etched in molten KOH, the wavy steps disappeared and hexagonal pits with {1010} facets appeared on the surface. An EPD of only 8 ×10^6cm^-2 shows that the GaN film has few dislocations. Both XRD and RBS channeling indicate the high quality of the GaN thick films. Sharp band-edge emission with a full width at half maximum(FWHM)of 67meV was observed, while the yellow and infrared emissions were also found. These emissions are likely caused by native defects and C and O impurities. 展开更多
关键词 GAN HVPE CL RBS/channeling yellow emission infrared emission
下载PDF
Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films 被引量:2
13
作者 Ping Song Cong Wang +5 位作者 Jie Ren Ying Sun Yong Zhang Angélique Bousquet Thierry Sauvage Eric Tomasella 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1371-1378,共8页
This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films.The(NiCuCrFeSi)N((NCCFS)N)films were deposited by a magnetron s... This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films.The(NiCuCrFeSi)N((NCCFS)N)films were deposited by a magnetron sputtering system.Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films.The real and imaginary parts of the permittivity for the(NCCFS)N material are calculated on the basis of the reflectance spectral fitting results.A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen content.To realize significant solar absorption,the film surface was reconstituted to match its impedance with air by designing a pyramid nanostructure metasurface.Compared with the absorptance of the as-deposited films,the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99.The metasurfaces also show low mid-infrared emissions with thermal emittance that can be as low as 0.06.These results demonstrate a new idea in the design of solar selective absorbing surface with controllable absorptance and low infrared emission for high-efficiency photo-thermal conversion. 展开更多
关键词 cutoff wavelength solar selective absorption infrared emission NANOSTRUCTURE high-entropy film
下载PDF
Global Warming and Its Multiple Causes 被引量:1
14
作者 Romdhane Ben Slama 《Journal of Atmospheric Science Research》 2020年第2期28-31,共4页
The global warming which preoccupies humanity,is still considered to be linked to a single cause which is the emission of greenhouse gases,CO2 in particular.In this article,we try to show that,on the one hand,the gree... The global warming which preoccupies humanity,is still considered to be linked to a single cause which is the emission of greenhouse gases,CO2 in particular.In this article,we try to show that,on the one hand,the greenhouse effect(the radiative imprisonment to use the scientific term)took place in conjunction with the infrared radiation emitted by the earth.The surplus of CO2 due to the combustion of fossil fuels,but also the surplus of infrared emissions from artificialized soils contribute together or each separately,to the imbalance of the natural greenhouse effect and the trend of global warming.In addition,another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh/year inducing a rise in temperature of 0.122°C,or 12.2°C/century. 展开更多
关键词 Greenhouse effect gases Global warming infrared emission Heat of combustion
下载PDF
Investigation on Open-Circuit Voltage of an Efficiency-Boosting Solar Cell Technique Featuring V-Configuration
15
作者 Jianming Li 《Natural Resources》 2021年第12期383-389,共7页
The V-Shaped Module (VSM) solar cell technology, which breaks the traditional concept of solar cell system, has been proven to enhance power conversion efficiency of some solar cells and has offered opportunities to i... The V-Shaped Module (VSM) solar cell technology, which breaks the traditional concept of solar cell system, has been proven to enhance power conversion efficiency of some solar cells and has offered opportunities to increase generation power densities in area-limited applications. Compared to a planar cell system, the VSM has an additional opportunity to absorb photons and taps the potential of solar cells. In this study, the VSM, the proposed common technique enhancing efficiencies of various solar cells, was investigated by using commercially available multi-crystalline silicon solar cells. The VSM technique enables the efficiencies of the multi-crystalline silicon cells to increase from 13.4% to 20.2%, giving an efficiency boost of 51%. Though the efficiency of the cells increases, the open-circuit voltage of the cells decreases owing to the VSM technique. Furthermore, the obvious reduction in open-circuit voltage in the VSM was found and the phenomenon is explained for the first time. 展开更多
关键词 Solar Cells Multicrystalline Silicon Light Trapping infrared emission
下载PDF
Effect of fabrication conditions on the properties of indium tin oxide powders 被引量:2
16
作者 谢卫 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2683-2688,共6页
This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, ... This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity c and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350℃ and Sn doping content 6~8wt% are determined. The application of ITO in the military camouflage field is proposed. 展开更多
关键词 tin-doped indium sintering temperature infrared emissivity powder resistivity
下载PDF
Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO_(2)/SiO_(2)/Si_(3)N_(4) micron particles 被引量:1
17
作者 赵洋春 周勇敏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期498-507,共10页
Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO_(2), SiO_(2), and Si_(3)... Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO_(2), SiO_(2), and Si_(3)N_(4)micron particles for radiative cooling is proposed in this study. The finite-difference time-domain algorithm is used to analyze the influence of particle size and coating thickness on radiative cooling performance. The results of the simulation show that the particle size of 3 μm can give the best cooling performance, and the coating thickness should be above 25 μm for SiO_(2)coating. Meanwhile, the mixture of SiO_(2)and Si_(3)N_(4)significantly improves the overall emissivity. Through sample preparation and characterization,the mixture coating with a 1:1 ratio addition on an Al substrate exhibits high reflectivity with a value of 87.6% in the solar spectrum, and an average emissivity of 92% in the infrared region(2.5 μm–15 μm), which can be attributed to the synergy among the optical properties of the material. Both coatings can theoretically be cooled by about 8℃ during the day and about 21℃ at nighttime with hc = 4 W·m^(-2)·K^(-1). Furthermore, even considering the significant conduction and convection exchanges, the cooling effect persists. Outdoor experimental results show that the temperature of the double-layer radiative cooling coating is always lower than the ambient temperature under direct sunlight during the day, and can be cooled by about 5℃ on average, while lower than the temperature of the aluminum film by almost 12℃. 展开更多
关键词 radiative cooling coatings thermal radiation infrared emissivity
下载PDF
THERMOGRAPHIC ASPECT ON LOADING A THIN-WALL PRESSURE VESSEL STEEL 被引量:1
18
作者 HUANG Yi LIN Xuerong XU Jun Institute of Metal Research,Academia Sinica,Shenyang,China HUANG Yi Associate Professor,Institute of Metal Research,Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第10期277-283,共7页
The infrared emission of a high pressure vessel steel and two thin wall pressure vessel models have been investigated by use of vibro-thermography.The experimental infrared crack lengths were found to be agreed closel... The infrared emission of a high pressure vessel steel and two thin wall pressure vessel models have been investigated by use of vibro-thermography.The experimental infrared crack lengths were found to be agreed closely with the optical values during fatigue process.A possi- ble nondestructive testing method used to evaluate the pressure vessel has been given. 展开更多
关键词 pressure vessel fatigue infrared cooling emission (IRCE) infrared heating emission (IRHE) Nondestructive testing
下载PDF
Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water 被引量:5
19
作者 刘洁 孟军平 +1 位作者 梁金生 霍晓丽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第9期890-894,共5页
A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far inf... A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far infrared radiation properties on the surface tension of water were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and a tensiometer, respectively. It was showed that, after being sintered at 1160 ℃, the solid solution was formed by CeO2 and Fe2O3, thus the crystal parameters (c/a axis ratio) and interplanar spacing of Fe2O3 increased. The addition of cerium was regarded to improve the far infrared radiation of ceramics, and the maximum emissivity value in the range of 5-20 μm was 0.94. The surface tension of water gradually decreased with increasing radiation time. 展开更多
关键词 rare earths far infrared radiation ceramics activated water far infrared emissivity surface tension
原文传递
Infrared emissivity and microwave absorbing property of epoxy-polyurethane/annealed carbonyl iron composites coatings 被引量:5
20
作者 CHEN YanPeng XU GuoYue +1 位作者 GUO TengChao ZHOU Ning 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第3期623-628,共6页
The microwave absorption property and infrared emissivity have been investigated for the single-layer coating made of the epoxy-polyurethane resin and carbonyl iron powders with variation of annealing treatment. Micro... The microwave absorption property and infrared emissivity have been investigated for the single-layer coating made of the epoxy-polyurethane resin and carbonyl iron powders with variation of annealing treatment. Microwave-absorbing property was investigated by measuring the complex permittivity and complex permeability of the absorber in the frequency range from 2 to 18 GHz. Infrared emissivity value was measured using IR-2 Infrared Emissometer in the wavelength range of 8-14 μm. After annealing, the Fe (110) peak became sharp, and the crystallization improved significantly. Annealing treatment could reduce the sttrface energy of powders, improve compatibility between fillers and adhesives, and result in increase of the density of the coating. The lowest value of infrared emissivity (0.419) was obtained from the coating made of the carbonyl iron powder annealed at 700℃ for 1 h. With the variation of the annealing temperature, the magnetic and dielectric properties of the carbonyl iron particle were changed. The maximum reflection loss decreased and the matching frequency shifted to lower frequency with increasing the annealing temperature of carbonyl iron particles, which coincided with the variation of the complex permeability and permittivity according to the annealing temperature. Magnetic loss factor and dielectric loss factor of carbonyl iron particles were improved with increasing the annealing temperature in the 2-18 GHz range. 展开更多
关键词 carbonyl iron infrared emissivity microwave absorbing property annealing treatment
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部