期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Zynq-7000 SoC-based portable uncooled infrared imaging system 被引量:1
1
作者 潘邵武 李晓琼 韩杰 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期435-440,共6页
A novel portable infrared imaging system based on uncooled focal plane array and programmable system-on-chip(SoC)was proposed.The latest Xilinx Zynq-7000 was used to integrate the main part of the system into a single... A novel portable infrared imaging system based on uncooled focal plane array and programmable system-on-chip(SoC)was proposed.The latest Xilinx Zynq-7000 was used to integrate the main part of the system into a single SoC.Parallel arithmetic units and digital modules were implemented on the programmable logic(PL)of Zynq-7000 to decrease system size and ensure the real-time p nonuniformity correction,while programs running on the processing system(PS)of Zynq-7000 controlled the system work flow and provided human-machine interfaces using open-source software such as Linux and OpenCV.Meanwhile,industry standard advanced extendable interface(AXI)buses were adopted to encapsulating standardized IP cores and build high speed data exchange bridges between units within Zynq-7000.Test results indicate that the image quality and real-time performance of the system can meet application requirements.And it provided a more flexible and extendable solution for evaluating and deploying infrared image enhancement and nonuniformity correction algorithms. 展开更多
关键词 infrared imaging system UNCOOLED ZYNQ-7000
下载PDF
Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array
2
作者 马丽凤 杜杉 +6 位作者 常军 陈蔚霖 武楚晗 石鑫鑫 黄翼 钟乐 穆全全 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期304-309,共6页
Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following pro... Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands. 展开更多
关键词 REAL-TIME middle infrared optical imaging system metasurface polarization array
下载PDF
Design of a real-time fiber-optic infrared imaging system with wide-angle and large depth of field 被引量:3
3
作者 彭星 孔令豹 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第1期29-36,共8页
A key limitation in the observation of instruments used in operations and heart sutures during a procedure is the scattering and absorption during optical imaging in the presence of blood.Therefore,we propose a novel ... A key limitation in the observation of instruments used in operations and heart sutures during a procedure is the scattering and absorption during optical imaging in the presence of blood.Therefore,we propose a novel real-time fiber-optic infrared imaging system simultaneously capturing a flexible wide field of view(FOV) and large depth of field infrared image in real time.The assessment criteria for imaging quality of the objective and coupling lens have been optimized and evaluated.Furthermore,the feasibility of manufacturing and assembly has been demonstrated with tolerance sensitivity and the Monte Carlo analysis.The simulated results show that the optical system can achieve a large working distance of 8 to25 mm,a wide FOV of 120°,and the relative illuminance is over 0.98 in the overall FOV.To achieve high imaging quality in the proposed system,the modulation transfer function is over 0.661 at 16.7 Ip/mm for a 320×256 short wavelength infrared camera sensor with a pixel size of 30 μm. 展开更多
关键词 infrared imaging system imaging through blood WIDE-ANGLE large depth of field optical design telecentric structure
原文传递
Evaluation of facial temperature distribution changes during meditation using infrared thermal imaging:An experimental,cross-over study
4
作者 Raoying Wang Lili Zhu +7 位作者 Xiaohan Liu Tengteng Li Jiayi Gao Hongjuan Li Yu Lu Yuanfeng Zhang Yibo Li Tao Lu 《Journal of Traditional Chinese Medical Sciences》 CAS 2023年第3期257-266,共10页
Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of f... Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of facial temperature changes during meditation from the perspective of traditional Chinese medicine facial diagnosis.Methods:Each participant performed 10 min meditation and 10 min resting but in different sequences.A concentration test was set as the task load,followed by a meditation/resting or resting/meditation session,during which the participants'facial temperatures were observed using IRTI.Participants were scored on the Big Five Inventory(BFI)and Mindful Attention Awareness Scale(MAAS).Results:Forehead temperatures decreased more during meditation than during the resting state.The chin temperature increased only during meditation(P<.0001).For the subjects with meditation experience,there were significant differences in the temperatures of the left forehead(P<.01),right forehead(P<.01)and chin(P<.05)between the meditation and resting state at the 10~(th)min.In the nontask state,the BFI-Extraversion showed a negative correlation with the temperature of the left forehead(R=-0.41,P=.03).In the post-task state,the temperature of the left forehead was negatively correlated with scores on the MAAS(R=-0.42,P=.02).Conclusion:Using IRTI to study meditation offers a practical solution to the challenges in meditation research.The results indicate that an increase in chin temperature may be a representative feature of a meditation state,and forehead temperature is also a potential indicator. 展开更多
关键词 MEDITATION infrared thermal imaging MINDFULNESS PERSONALITY Meditation experience
下载PDF
Feasibility study of assessing cotton fiber maturity from near infrared hyperspectral imaging technique
5
作者 LIU Yongliang TAO Feifei +1 位作者 YAO Haibo KINCAID Russell 《Journal of Cotton Research》 CAS 2023年第4期266-276,共11页
Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat... Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment. 展开更多
关键词 Near infrared spectroscopy Near infrared hyperspectral imaging Fiber maturity Seed cotton Partial least squares regression
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
6
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Infrared and Visible Image Fusion Based on Res2Net-Transformer Automatic Encoding and Decoding
7
作者 Chunming Wu Wukai Liu Xin Ma 《Computers, Materials & Continua》 SCIE EI 2024年第4期1441-1461,共21页
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne... A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations. 展开更多
关键词 Image fusion Res2Net-Transformer infrared image visible image
下载PDF
IR-YOLO: Real-Time Infrared Vehicle and Pedestrian Detection
8
作者 Xiao Luo Hao Zhu Zhenli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2667-2687,共21页
Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means... Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios. 展开更多
关键词 Traffic safety infrared image pedestrians and vehicles focal GIoU distributed shift convolution
下载PDF
Meibomian glands segmentation in infrared images with limited annotation
9
作者 Jia-Wen Lin Ling-Jie Lin +5 位作者 Feng Lu Tai-Chen Lai Jing Zou Lin-Ling Guo Zhi-Ming Lin Li Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期401-407,共7页
●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS... ●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction. 展开更多
关键词 infrared meibomian glands images meibomian gland dysfunction meibomian glands segmentation weak supervision scribbled annotation
下载PDF
Gait Recognition System in Thermal Infrared Night Imaging by Using Deep Convolutional Neural Networks
10
作者 石曼舒 孙韶媛 +1 位作者 赵国顺 瞿斌杰 《Journal of Donghua University(English Edition)》 CAS 2021年第6期527-538,共12页
Gait is an essential biomedical feature that distinguishes individuals through walking.This feature automatically stimulates the need for remote human recognition in security-sensitive visual monitoring applications.H... Gait is an essential biomedical feature that distinguishes individuals through walking.This feature automatically stimulates the need for remote human recognition in security-sensitive visual monitoring applications.However,there is still a lack of sufficient accuracy of gait recognition at night,in addition to taking some critical factors that affect the performances of the recognition algorithm.Therefore,a novel approach is proposed to automatically identify individuals from thermal infrared(TIR)images according to their gaits captured at night.This approach uses a new night gait network(NGaitNet)based on similarity deep convolutional neural networks(CNNs)method to enhance gait recognition at night.First,the TIR image is represented via personal movements and enhanced body skeleton segments.Then,the state-space method with a Hough transform is used to extract gait features to obtain skeletal joints′angles.These features are trained to identify the most discriminating gait patterns that indicate a change in human identity.To verify the proposed method,the experimental results are performed by using learning and validation curves via being connected by the Visdom website.The proposed thermal infrared imaging night gait recognition(TIRNGaitNet)approach has achieved the highest gait recognition accuracy rates(99.5%,97.0%),especially under normal walking conditions on the Chinese Academy of Sciences Institute of Automation infrared night gait dataset(CASIA C)and Donghua University thermal infrared night gait database(DHU night gait dataset).On the same dataset,the results of the TIRNGaitNet approach provide the record scores of(98.0%,87.0%)under the slow walking condition and(94.0%,86.0%)for the quick walking condition. 展开更多
关键词 gait recognition thermal infrared(TIR)image SILHOUETTE feature extraction convolutional neural network(CNN)
下载PDF
Comparative study on identi¯cation of healthy and osteoarthritic articular cartilages by fourier transform infrared imaging and chemometrics methods
11
作者 Zhi-Hua Mao Yue-Chao Wu +2 位作者 Xue-Xi Zhang Hao Gao Jian-Hua Yin 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第3期43-51,共9页
Two discriminant methods,partial least squares-discriminant analysis(PLS-DA)and Fisher's discriminant analysis(FDA),were combined with Fourier transform infrared imaging(FTIRI)to differentiate healthy and osteoart... Two discriminant methods,partial least squares-discriminant analysis(PLS-DA)and Fisher's discriminant analysis(FDA),were combined with Fourier transform infrared imaging(FTIRI)to differentiate healthy and osteoarthritic articular cartilage in a canine model.Osteoarthritic cartilage had been developed for up to two years after the anterior cruciate ligament(ACL)transection in one knee.Cartilage specimens were sectioned into 10μm thickness for FTIRI.A PLS-DA model was developed after spectral pre-processing.All IR spectra extracted from FTIR images were calculated by PLS-DA with the discriminant accuracy of 90%.Prior to FDA,principal component analysis(PCA)was performed to decompose the IR spectral matrix into informative princi pal component matrices.Based on the different discriminant mechanism,the discriminant accuracy(96%)of PCA-FDA with high convenience was higher than that of PLS-DA.No healthy cartilage sample was mis assigned by these two methods.The above mentioned suggested that both integrated technologies of FTIRI-PLS-DA and,especially,FTIRI-PCA-FDA could become a promising tool for the discrimination of healthy and osteoarthritic cartilage specimen as well as the diagnosis of cartilage lesion at microscopic level.The results of the study would be helpful for better understanding the pathology of osteoarthritics. 展开更多
关键词 Articular cartilage OSTEOARTHRITIS Fourier transform infrared imaging partial least squares discriminant analysis Fisher's discriminant analysis.
下载PDF
COMP ARISON OF MACROMOLECULAR COMPONENT DISTRIBUTIONS IN OSTEOARTHRITIC AND HEALTHY CARTILAGES BY FOURIER TRANSFORM INFRARED IMAGING
12
作者 JIANHUA YIN YANG XIA ZHIYAN XIAO 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2013年第4期84-90,共7页
Fourier transform infrared imaging(FTIRI)was used to examine the depth-dependent content variations of macromolcular components,ollagen and protooglycan(PG),in osteoarthritic and healthy cartilages.Dried 6 pmm thick s... Fourier transform infrared imaging(FTIRI)was used to examine the depth-dependent content variations of macromolcular components,ollagen and protooglycan(PG),in osteoarthritic and healthy cartilages.Dried 6 pmm thick sections of canine knee cartilages were imaged at 6.25 pμrm pixel-size in FTIRI.By analyzing the infrared(IR)images and spectra,the depth dependence of characteristic band(sugar)intensity of PG show obvious difference bet ween the cartilage sections of(OA)and bealth.The result confimns that PG content decreases in the ostcoarthritic cartilage.However,no clear change occurs to collagen,suggesting that the OA influences little on the collagen content at early stage of OA.This observation will be helpful to further understand PG loss associated with pathological conditions in OA,and demonstrates that FIIRI has the po-tential to become an important analytical tool to identify early clinical signs of tissue degna-dation,such as PG loss even collagen disruption. 展开更多
关键词 Macromolecular component OSTEOARTHRITIS articular cartilage Fourier transform infrared imaging(FTIRI)
下载PDF
A"donor–acceptor"structured semiconductor polymer for near infrared fluorescence imaging guided photodynamic therapy
13
作者 Baoling Li Ting Xu +5 位作者 Xiaosha Wang Shaojing Zhao Benhua Wang Lihui Jiang Xiangzhi Song Minhuan Lan 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第4期75-85,共11页
Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selec... Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selectivity,and minimal invasiveness.For this,photosensitizers with NIR fluorescence emission and high^(1)O_(2)generation quantum yield are highly desirable.Herein,we designed and synthesized a"donor-acceptor"(D-A)structured semiconductor polymer(SP),which was then wrapped with an amphiphilic compound(Pluronic■F127)to prepare water-soluble nanoparticles(F-SP NPs).The obtained F-SP NPs exhibit good water solubility,excellent particle size stability,strong absorbance at deep red region,and strong NIR fluorescent emission characteristics.The maximal mass extinction coe±cient and fluorescence quantum yield of these F-SPs were calculated to be 21.7 L/(g·cm)and 6.5%,respectively.Moreover,the^(1)O_(2)quantum yield of 89%for F-SP NPs has been achieved under 635 nm laser irradiation,which is higher than Methylene Blue,Ce6,and PpIX.The outstanding properties of these F-SP NPs originate from their unique D-A molecular characteristic.This work should help guide the design of novel semiconductor polymer for NIR fluorescent imaging guided PDT applications. 展开更多
关键词 Donor-acceptor structure semiconducting polymer nanoparticles photodynamic therapy near infrared fluorescence imaging
下载PDF
Near-infrared chemical imaging for quantitative analysis of chlorpheniramine maleate and distribution homogeneity assessment in pharmaceutical formulations
14
作者 Manfei Xu Luwei Zhou +3 位作者 Qiao Zhang Zhisheng Wu Xinyuan Shi Yanjiang Qiao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第6期12-20,共9页
Near infrared chemical imaging(NIR-CI)combines conventional near infrared(NIR)spectros-copy with chemical imaging,thus provides spectral and spatial information simult aneously.It could be utilized to visualize the sp... Near infrared chemical imaging(NIR-CI)combines conventional near infrared(NIR)spectros-copy with chemical imaging,thus provides spectral and spatial information simult aneously.It could be utilized to visualize the spatial distribution of the ingredients in a sample.The data acquired using NIR CI instrument are hyperspectral data cube(hypercube)containing thousands of spectra.Chemometric methodologies are necessary to transform spectral information into chemical information.Partial least squares(PLS)method was performed to extract chemical information of chlorpheniramine maleate in pharmaceutical formulations.A series of samples which consisted of different CPM concentrations(w/w)were compressed and hypercube data were measured.The spectra extracted from the hypercube were used to establish the PLS model of CPM.The results of the model were R^(2)_(val)0.981,RMSEC 0.384%,RMSECV 0.483%,RMSEP 0.631%,indicating that this model was reliable. 展开更多
关键词 Near infrared chemical imaging partial least squares regression assessment of distributional homogeneity chlorpheniramine maleate
下载PDF
Evaluation of growth characteristics of Aspergillus parasiticus inoculated in different culture media by shortwave infrared(SWIR) hyperspectral imaging
15
作者 Xuan Chu Wei Wang +7 位作者 Xinzhi Ni Haitao Zheng Xin Zhao Hong Zhuang Kurt C.Lawrence Chunyang Li Yufeng Li Chengjun Lu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第5期69-83,共15页
The growth characteristics of Aspergillus parasitic us incubated on two culture media were ex-amined using shortwave infrared(SWIR,1000-2500 nm)hyperspectral imaging(HSI)in this work.HSI images of the A.parasiticus co... The growth characteristics of Aspergillus parasitic us incubated on two culture media were ex-amined using shortwave infrared(SWIR,1000-2500 nm)hyperspectral imaging(HSI)in this work.HSI images of the A.parasiticus colonies growing on rose bengal medium(RBM)and maize agar medium(MAM)were recorded daily for 6 days.The growth phases of A.parasiticus were indicated through the pixel number and average spectra of colonies.On score plot of the first principal component(PC1)and PC2,four growth zones with varying mycelium densities were identified.Eight characteristic wavelengths(1095,1145,1195,1279,1442,1655,1834 and 1929 nm)were selected from PC1 loading,average spectra of each colony as well as each growth zone.F urthermore,support vector machine(S VM)classifier based on the eight wavelengths was built,and the classification accuracies for the four zones(from outer to inner zones)on the colonies on RBM were 99.77%,9935%,99.75%and 99.60%and 99.77%,9939%,99.31%and 98.22%for colonies on MAM.In addition,a new score plot of PC2 and PC3 was used to differ-entiate the colonies incubated on RBM and MAM for 6 days.Then characteristic wavelengths of 1067,1195,1279,1369,1459,1694,1834 and 1929 nm were selected from the loading of PC2 and PCg.Based on them,a new SVM model was developed to diferentiate colonies on RBM and MAM with accuracy of 100.00%and 9999%,respectively.In conclusion,SWIR hyperspectral image is a powerful tool for evaluation of growth characteristics of A.parasiticus incubated in diferent culture media. 展开更多
关键词 Aspergilus parasiticus growth characteristics characteristic wavelengths shortwave infrared(SWIR)hyperspectral imaging
下载PDF
Model-based deep learning for fiber bundle infrared image restoration
16
作者 Bo-wen Wang Le Li +4 位作者 Hai-bo Yang Jia-xin Chen Yu-hai Li Qian Chen Chao Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期38-45,共8页
As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of u... As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of universal honeycomb artifacts and low signal-to-noise ratio(SNR)imaging in fiber bundles,the iterative super-resolution reconstruction network based on a physical model is proposed.Under the constraint of solving the two subproblems of data fidelity and prior regularization term alternately,the network can efficiently“regenerate”the lost spatial resolution with deep learning.By building and calibrating a dual-path imaging system,the real-world dataset where paired low-resolution(LR)-high-resolution(HR)images on the same scene can be generated simultaneously.Numerical results on both the United States Air Force(USAF)resolution target and complex target objects demonstrate that the algorithm can restore high-contrast images without pixilated noise.On the basis of super-resolution reconstruction,compound eye image composition based on fiber bundle is also embedded in this paper for the actual imaging requirements.The proposed work is the first to apply a physical model-based deep learning network to fiber bundle imaging in the infrared band,effectively promoting the engineering application of thermal radiation detection. 展开更多
关键词 Fiber bundle Deep learning infrared imaging Image restoration
下载PDF
Research on Infrared Image Fusion Technology Based on Road Crack Detection
17
作者 Guangjun Li Lin Nan +3 位作者 Lu Zhang Manman Feng Yan Liu Xu Meng 《Journal of World Architecture》 2023年第3期21-26,共6页
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr... This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection. 展开更多
关键词 Road crack detection infrared image fusion technology Detection quality
下载PDF
Experimental study on the infrared precursor characteristics of gas-bearing coal failure under loading 被引量:4
18
作者 Shan Yin Zhonghui Li +4 位作者 Dazhao Song Xueqiu He Liming Qiu Quan Lou He Tian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期901-912,共12页
The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and ... The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal. 展开更多
关键词 Gas–bearing coal Gas pressure infrared temperature infrared thermal image infrared precursory law
下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:4
19
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER Fault diagnosis infrared image Generative adversarial network Semi-supervised learning
下载PDF
Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass 被引量:3
20
作者 DU Wen-yong ZHANG Lu-da +7 位作者 HU Zhen-fang Shamaila Z ZENG Ai-jun SONG Jian-li LIU Ya-jia Wolfram S Joachim M HE Xiong-kui 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1476-1480,共5页
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha... The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass. 展开更多
关键词 Thermal infrared image infrared index ICWSI Technology of irrigation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部