The development of an efficient moving target detection algorithm in IR-image sequence is considered one of the most critical research fields in modern IRST (Infrared Search and Track) systems, especially when dealing...The development of an efficient moving target detection algorithm in IR-image sequence is considered one of the most critical research fields in modern IRST (Infrared Search and Track) systems, especially when dealing with moving dim point targets. In this paper we propose a new approach in processing of the Infrared image sequence for moving dim point targets detection built on the transformation of the IR-image sequence into 4-vectors for each frame in the sequence. The results of testing the proposed approach on a set of frames having a simple single pixel target performing a different motion patterns show the validity of the approach for detecting the motion, with simplicity in calculation and low time consumption.展开更多
An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging f...An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.展开更多
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul...Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.展开更多
The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore w...The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection.展开更多
针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小...针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。展开更多
红外弱小目标检测技术是红外探测系统的核心技术之一。针对远距离复杂场景下红外弱小目标对比度低、信噪比低和纹理特征稀疏分散导致目标检测率低的问题,提出一种融合注意力机制和改进YOLOv3的红外弱小目标检测算法。首先,在YOLOv3的基...红外弱小目标检测技术是红外探测系统的核心技术之一。针对远距离复杂场景下红外弱小目标对比度低、信噪比低和纹理特征稀疏分散导致目标检测率低的问题,提出一种融合注意力机制和改进YOLOv3的红外弱小目标检测算法。首先,在YOLOv3的基础上,用更大尺度的检测头替换最小尺度的检测头,在保证推理速度的基础上有效提升了红外图像中小目标的检测概率。然后,在检测头之前设计了Infrared Attention模块,通过通道间的信息交互,抽取出更加关键重要的信息供网络学习。最后,用完全交并比损失(Complete IoU Loss)替代交并比损失(Intersection over Union Loss)来衡量预测框的检测能力,通过梯度回传实现更好的模型训练。实验结果表明,提出的YOLOv3-DCA能完成多种场景下红外弱小目标的检测任务,且检测准确率、召回率、F1和平均准确率分别达到91.8%、88.8%、93.0%和88.8%,平均准确率比YOLOv3基线提升约7%,与主流的SSD、CenterNet和YOLOv4模型对比平均准确率也取得了目前最优。展开更多
文摘The development of an efficient moving target detection algorithm in IR-image sequence is considered one of the most critical research fields in modern IRST (Infrared Search and Track) systems, especially when dealing with moving dim point targets. In this paper we propose a new approach in processing of the Infrared image sequence for moving dim point targets detection built on the transformation of the IR-image sequence into 4-vectors for each frame in the sequence. The results of testing the proposed approach on a set of frames having a simple single pixel target performing a different motion patterns show the validity of the approach for detecting the motion, with simplicity in calculation and low time consumption.
文摘An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.
基金supported by the National Natural Science Foundation of China under Grant 62003247, Grant 62075169, and Grant 62061160370。
文摘Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.
文摘The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection.
文摘针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。
文摘红外弱小目标检测技术是红外探测系统的核心技术之一。针对远距离复杂场景下红外弱小目标对比度低、信噪比低和纹理特征稀疏分散导致目标检测率低的问题,提出一种融合注意力机制和改进YOLOv3的红外弱小目标检测算法。首先,在YOLOv3的基础上,用更大尺度的检测头替换最小尺度的检测头,在保证推理速度的基础上有效提升了红外图像中小目标的检测概率。然后,在检测头之前设计了Infrared Attention模块,通过通道间的信息交互,抽取出更加关键重要的信息供网络学习。最后,用完全交并比损失(Complete IoU Loss)替代交并比损失(Intersection over Union Loss)来衡量预测框的检测能力,通过梯度回传实现更好的模型训练。实验结果表明,提出的YOLOv3-DCA能完成多种场景下红外弱小目标的检测任务,且检测准确率、召回率、F1和平均准确率分别达到91.8%、88.8%、93.0%和88.8%,平均准确率比YOLOv3基线提升约7%,与主流的SSD、CenterNet和YOLOv4模型对比平均准确率也取得了目前最优。