Inhalation and atmospheric pollution studies have focused on particulate matter due to correlations and associations with various morbidities and mortalities. This research analyzed ambient concentrations of inhalable...Inhalation and atmospheric pollution studies have focused on particulate matter due to correlations and associations with various morbidities and mortalities. This research analyzed ambient concentrations of inhalable particulate matter (PM10) on the island of Curaçao in order to evaluate through comparative literature analysis and recommended public health guidelines the potential health risks. Available hourly, daily and monthly PM10 measurements were accessed from June 2010 through December 2014 from a local air monitoring station in Willemstad. Mean annual concentrations of PM10 (31 - 122 μg/m3) in Curaçao are among the highest reported globally, demonstrating an increasing trend over time and exceed current public health guidelines recommended by local and international agencies. While the epidemiological evidence is inadequate to infer a causal association between health effects and long-term exposures of the measured PM10 concentrations, the results indicate that emissions controls are not adequate for compliance with international exposure standards.展开更多
The Tongon mine, the largest gold mine in C?te d’Ivoire, has been in operation since April 2010. However, to our knowledge to date, no study has been conducted on metallic contamination in suspended particulate matte...The Tongon mine, the largest gold mine in C?te d’Ivoire, has been in operation since April 2010. However, to our knowledge to date, no study has been conducted on metallic contamination in suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) where there is a lack of information on the carcinogenic and non-carcinogenic risk to human health associated with the exposure of populations in the Tongon area to these pollutants. The general objective of this study is to evaluate the level of contamination of PM<sub>10</sub>;PM<sub>2.5</sub> by heavy metals and their impact on the health of populations exposed to these pollutants in the Tongon gold mine area. The sampling and measurement of suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) were done using a MiniVol TAS passive air sampler. Heavy metal concentrations were determined by inductively coupled plasma mass spectroscopy (Nex ION 2000 ICP-MS, USA). The results indicate that the average concentrations of suspended particles (PM<sub>2.5</sub> and PM<sub>10</sub>) obtained are all above the recommended exposure limits. In addition, among the heavy metals contained in the suspended particles, the concentrations of arsenic and nickel are high and all above the standard limit values. The assessment of the health risks related to the inhalation of PM<sub>10</sub> particles reveals that their inhalation over a long period could cause a carcinogenic risk.展开更多
This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic m...This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.展开更多
Air pollution poses a health hazard in all countries.However,complete data on ambient particulate matter(PM)concentrations are not available in all world regions.Reanalysis data is already a valuable source of exposur...Air pollution poses a health hazard in all countries.However,complete data on ambient particulate matter(PM)concentrations are not available in all world regions.Reanalysis data is already a valuable source of exposure data in epidemiological studies examining the relationship between temperature and health.Nevertheless,the performance of reanalysis data in assessing the short-term health effects of particulate air pollution remains unclear.We assessed the performance of CAMS reanalysis(EAC4)data from the European Centre for Medium-Range Weather Forecasts,compared with daily PM concentrations from field monitoring stations,to estimate short-term exposure to PM with an aerodynamic diameter less than 10μm(PM_(10))on daily mortality in 33 Spanish provincial capital cities using a two-stage time series regression design.The shape of the PM_(10)distribution varied substantially between PM observations and CAMS global reanalysis of atmospheric composition(EAC4)reanalysis data,with correlation ranging from 0.21 to 0.58.The pooled mortality risk for a 10μg/m^(3)increase in PM_(10)showed similar estimates using PM concentrations{relative risks(RR)=1.007,95%confidence intervals(95%CI)=[1.002,1.011]}and EAC4 reanalysis data(RR=1.011,95%CI=[1.006,1.015]).However,the city-specific PM_(10)beta coefficients estimated using PM concentrations and EAC4 reanalysis data showed a low correlation(r=0.22).The use of reanalysis data should be approached with caution when assessing the association between particulate matter air pollution and health outcomes,particularly in cities with small populations.展开更多
Oxidative damage to plasmid DNA induced by airborne PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) is caused by the bioavailable (i.e., soluble) heavy metals on the particle surface. Howe...Oxidative damage to plasmid DNA induced by airborne PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) is caused by the bioavailable (i.e., soluble) heavy metals on the particle surface. However, quantitative analyses of the links between PM10 and oxidative damage are limited. In this study, plasmid DNA assay and ICP-MS were applied to study oxidative capacity and trace element compositions, respectively, of summer and winter PM10 samples collected at several sites (Sun Yat Sen Municipal Park (SYSP) and Av. de Horta e Costa (AHC) on the Macao peninsula and Macao University on Tai- pa Island (TI)) in Macao. At AHC and TI, the oxidative capacity of PM10 collected in winter was higher than that collected in summer, for both the whole sample and the water-soluble fraction. In contrast, no seasonal variation was noted at SYSP. PMI0 exhibited the highest oxidative capacity at SYSP and lowest oxidative capacity at TI in both seasons, demonstrating that the PMl0 collected on the Macao peninsula had a higher toxicity than that from Taipa Island. ICP-MS analyses revealed that the concentrations of total analyzed trace elements and their water-soluble components in PMI0 from TI and AHC were higher in winter than in summer, whereas SYSP displayed the opposite trend. The extents of oxidative damage induced by the wa- ter-soluble fractions and intact whole particles were generally similar, implying that the oxidative damage caused by particles in Macao resulted mainly from the water-soluble fraction. The oxidative capacities of PM10 were positively correlated with both whole and soluble Zn at the 95% confidence level, indicating that Zn was the major element responsible for the oxidative damage caused by particles in Macao. Other heavy metals, such as Cr, Cu, Cd, Ni, As, and Pb, also exhibited elevated concen- trations, and the potential health impacts of these metals should be considered.展开更多
文摘Inhalation and atmospheric pollution studies have focused on particulate matter due to correlations and associations with various morbidities and mortalities. This research analyzed ambient concentrations of inhalable particulate matter (PM10) on the island of Curaçao in order to evaluate through comparative literature analysis and recommended public health guidelines the potential health risks. Available hourly, daily and monthly PM10 measurements were accessed from June 2010 through December 2014 from a local air monitoring station in Willemstad. Mean annual concentrations of PM10 (31 - 122 μg/m3) in Curaçao are among the highest reported globally, demonstrating an increasing trend over time and exceed current public health guidelines recommended by local and international agencies. While the epidemiological evidence is inadequate to infer a causal association between health effects and long-term exposures of the measured PM10 concentrations, the results indicate that emissions controls are not adequate for compliance with international exposure standards.
文摘The Tongon mine, the largest gold mine in C?te d’Ivoire, has been in operation since April 2010. However, to our knowledge to date, no study has been conducted on metallic contamination in suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) where there is a lack of information on the carcinogenic and non-carcinogenic risk to human health associated with the exposure of populations in the Tongon area to these pollutants. The general objective of this study is to evaluate the level of contamination of PM<sub>10</sub>;PM<sub>2.5</sub> by heavy metals and their impact on the health of populations exposed to these pollutants in the Tongon gold mine area. The sampling and measurement of suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) were done using a MiniVol TAS passive air sampler. Heavy metal concentrations were determined by inductively coupled plasma mass spectroscopy (Nex ION 2000 ICP-MS, USA). The results indicate that the average concentrations of suspended particles (PM<sub>2.5</sub> and PM<sub>10</sub>) obtained are all above the recommended exposure limits. In addition, among the heavy metals contained in the suspended particles, the concentrations of arsenic and nickel are high and all above the standard limit values. The assessment of the health risks related to the inhalation of PM<sub>10</sub> particles reveals that their inhalation over a long period could cause a carcinogenic risk.
基金The National Natural Science Foundation of China(No.40275040) and the Shanghai Leading Academic Disciplines(No. T0105)
文摘This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.
文摘Air pollution poses a health hazard in all countries.However,complete data on ambient particulate matter(PM)concentrations are not available in all world regions.Reanalysis data is already a valuable source of exposure data in epidemiological studies examining the relationship between temperature and health.Nevertheless,the performance of reanalysis data in assessing the short-term health effects of particulate air pollution remains unclear.We assessed the performance of CAMS reanalysis(EAC4)data from the European Centre for Medium-Range Weather Forecasts,compared with daily PM concentrations from field monitoring stations,to estimate short-term exposure to PM with an aerodynamic diameter less than 10μm(PM_(10))on daily mortality in 33 Spanish provincial capital cities using a two-stage time series regression design.The shape of the PM_(10)distribution varied substantially between PM observations and CAMS global reanalysis of atmospheric composition(EAC4)reanalysis data,with correlation ranging from 0.21 to 0.58.The pooled mortality risk for a 10μg/m^(3)increase in PM_(10)showed similar estimates using PM concentrations{relative risks(RR)=1.007,95%confidence intervals(95%CI)=[1.002,1.011]}and EAC4 reanalysis data(RR=1.011,95%CI=[1.006,1.015]).However,the city-specific PM_(10)beta coefficients estimated using PM concentrations and EAC4 reanalysis data showed a low correlation(r=0.22).The use of reanalysis data should be approached with caution when assessing the association between particulate matter air pollution and health outcomes,particularly in cities with small populations.
基金supported by the National Natural Science Foundation of China (Grant No. 41030213)the Macao Foundation for Development of Science and Technology (Grant No. 023/2006/A)
文摘Oxidative damage to plasmid DNA induced by airborne PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) is caused by the bioavailable (i.e., soluble) heavy metals on the particle surface. However, quantitative analyses of the links between PM10 and oxidative damage are limited. In this study, plasmid DNA assay and ICP-MS were applied to study oxidative capacity and trace element compositions, respectively, of summer and winter PM10 samples collected at several sites (Sun Yat Sen Municipal Park (SYSP) and Av. de Horta e Costa (AHC) on the Macao peninsula and Macao University on Tai- pa Island (TI)) in Macao. At AHC and TI, the oxidative capacity of PM10 collected in winter was higher than that collected in summer, for both the whole sample and the water-soluble fraction. In contrast, no seasonal variation was noted at SYSP. PMI0 exhibited the highest oxidative capacity at SYSP and lowest oxidative capacity at TI in both seasons, demonstrating that the PMl0 collected on the Macao peninsula had a higher toxicity than that from Taipa Island. ICP-MS analyses revealed that the concentrations of total analyzed trace elements and their water-soluble components in PMI0 from TI and AHC were higher in winter than in summer, whereas SYSP displayed the opposite trend. The extents of oxidative damage induced by the wa- ter-soluble fractions and intact whole particles were generally similar, implying that the oxidative damage caused by particles in Macao resulted mainly from the water-soluble fraction. The oxidative capacities of PM10 were positively correlated with both whole and soluble Zn at the 95% confidence level, indicating that Zn was the major element responsible for the oxidative damage caused by particles in Macao. Other heavy metals, such as Cr, Cu, Cd, Ni, As, and Pb, also exhibited elevated concen- trations, and the potential health impacts of these metals should be considered.