To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adju...To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-KB) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-y, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-~:B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-~:B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration.展开更多
Objective:To determine whether NF-κB is constitutively activated in human bladder cancer cell and,if so,to deter-mine the invasiveness inhibition of bladder cancer cells by nuclear factor-κB decoy—circular dumbbell...Objective:To determine whether NF-κB is constitutively activated in human bladder cancer cell and,if so,to deter-mine the invasiveness inhibition of bladder cancer cells by nuclear factor-κB decoy—circular dumbbell oligodeoxynucleotides(CD-ODN).Methods:NF-κBp65 activation was determined by immunohistochemical analysis of formalin-fixed,paraffin-embed-ded specimens from 38 cases of bladder transitional cell carcinoma patients.We quantified nuclear staining of RelA as a marker of NF-κBp65 activation.CD-ODN were transfected into human bladder cancer cell line BIU87 by lipofectamine.Luciferase reporter were applied to detecting NF-κB DNA binding activity.The expression levels of uPA were detected by RT-PCR and the cells’ invasion ability by transwell cell culture chamber.Results:P65 excessive activation existed in tumor cell(P<0.01),the activation degree correlated significantly with the expression of uPA(r=0.89,P<0.01),as well as related to tumor invasion-related clinicopathological features such as lymphatic metastasis(P<0.01)and pathological ranking(P<0.05);After transfection with CD-ODN,the activation of NF-κB in BIU87 cell line was suppressed remarkably,the expression level of uPA was decreased and the cells’ invasiveness was weakened as well.Conclusion:Excessively activated NF-κB is related to tumor progression pos-sibly due to its transcriptional regulation of invasion-related factors such as uPA.CD-ODN can efficiently suppress DNA binding activity of NF-κB to reduce the invasive potency of tumor.展开更多
Progranulin is closely related to neuronal survival in a neuroinflammatory mouse model and attenuates inflammatory reactions. Atsttrin is an engineered protein composed of three progranulin fragments and has been show...Progranulin is closely related to neuronal survival in a neuroinflammatory mouse model and attenuates inflammatory reactions. Atsttrin is an engineered protein composed of three progranulin fragments and has been shown to have an effect similar to that of progranulin. Atsttrin has anti-inflammatory actions in multiple arthritis mouse models, and it protects against further arthritis development. However, whether Atsttrin has a role in neuroinflammation remains to be elucidated. In this study, we produced a neuroinflammatory mouse model by intracerebroventricular injection of 1 μL lipopolysaccharide(10 μg/μL). Atsttrin(2.5 mg/kg) was administered via intraperitoneal injection every 3 days over a period of 7 days before intracerebroventricular injection of 1 μL lipopolysaccharide(10 μg/μL). In addition, astrocyte cultures were treated with 0, 100 or 300 ng/mL lipopolysaccharide, with 200 ng/mL Atsttrin simultaneously. Immunohistochemistry, enzyme-linked immunosorbent assay and real-time reverse transcription-polymerase chain reaction were performed to examine the protein and mRNA levels of inflammatory mediators and to assess activation of the nuclear factor kappa B signaling pathway. Progranulin expression in the brain of wild-type mice and in astrocyte cultures was increased after lipopolysaccharide administration. The protein and mRNA expression levels of tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were increased in the brain of progranulin knockout mice after lipopolysaccharide administration. Atsttrin treatment reduced the lipopolysaccharide-induced increase in the protein and mRNA levels of tumor necrosis factor-α, interleukin-1β, matrix metalloproteinase-3 and inducible nitric oxide synthase in the brain of progranulin knockout mice. Atsttrin also reduced the expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix metalloproteinase 3 mRNA in lipopolysaccharide-treated astrocytes in vitro, and decreased the concentration of tumor necrosis factor α and interleukin-1β in the supernatant. Furthermore, Atsttrin significantly reduced the levels of phospho-nuclear factor kappa B inhibitor α in the brain of lipopolysaccharide-treated progranulin knockout mice and astrocytes, and it decreased the expression of nuclear factor kappa B2 in astrocytes. Collectively, our findings show that the anti-neuroinflammatory effect of Atsttrin involves inhibiton of the nuclear factor kappa B signaling pathway, and they suggest that Atsttrin may have clinical potential in neuroinflammatory therapy.展开更多
This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. T...This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury, compared with normal saline-treated rats. This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury. Overall, the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.展开更多
We have observed earlier that testosterone at physiological concentrations can stimulate tissue factor pathway inhibitor(TFPI)gene expression through the androgen receptor in endothelial cells.This study further inves...We have observed earlier that testosterone at physiological concentrations can stimulate tissue factor pathway inhibitor(TFPI)gene expression through the androgen receptor in endothelial cells.This study further investigated the impact of testosterone on TFPI levels in response to inflammatory cytokine tumor necrosis factor-alpha(TNF-α).Cultured human umbilical vein endothelial cells were incubated in the presence or absence of testosterone or TNF-α.TFPI protein and mRNA levels were assessed by enzyme-linked immunosorbent assay and quantitative real-time reverse transcription polymerase chain reaction.To study the cellular mechanism of testosterone’s action,nuclear factor-kappa B(NF-κB)translocation was confirmed by electrophoretic mobility shift assays.We found that after NF-κB was activated by TNF-α,TFPI protein levels declined significantly by 37.3%compared with controls(P<0.001),and the mRNA levels of TFPI also decreased greatly(P<0.001).A concentration of 30 nmol L-1 testosterone increased the secretion of TFPI compared with the TNF-α-treated group.NF-κB DNA-binding activity was significantly suppressed by testosterone(P<0.05).This suggests that physiological testosterone concentrations may exert their antithrombotic effects on TFPI expression during inflammation by downregulating NF-κB activity.展开更多
BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and i...BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and its related target genes and products such as vascular endothelial cell adhesion molecule and CXC chemokines. We aimed to assess the roles of those mediators in a UTI-treated mouse model of hepatic I/R injury. METHODS: Treatment group 1 (UTI given 5 minutes prior to liver ischemia), treatment group 2 (UTI given 5 minutes after the anhepatic phase) and a control group were investigated. Blood and liver samples were obtained and compared at 1, 3, 6 and 24 hours after reperfusion. RESULTS: Attenuation of pathological hepatocellular damage was greater in the treatment groups than in the control group (P < 0.05). Compared with the control group, the UTI treatment groups showed significantly lower serum alanine aminotransferase and aspartate aminotransferase levels, decreased myeloperoxidase activity, and reduced NF-kappa B activation. Also downregulated was the expression of tumor necrosis factor-alpha, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2 at the mRNA level. P-selectin protein and intercellular adhesion molecule-1 protein expression were also downregulated. In addition, the treatment group I showed a better protective effect against I/R injury than the treatment group 2. CONCLUSIONS: UTI reduces NF-kappa B activation and downregulates the expression of its related mediators, followed by the inhibition of neutrophil aggregation and infiltration in hepatic I/R injury. The protective role of UTI is more effective in prevention than in treatment.展开更多
Previous studies have confirmed that the anti-virus effects of Shuanghuanglian injection may be associated with nuclear factor-kappa B activity. This study observed nuclear factor-kappa B expression in mice with viral...Previous studies have confirmed that the anti-virus effects of Shuanghuanglian injection may be associated with nuclear factor-kappa B activity. This study observed nuclear factor-kappa B expression in mice with viral encephalitis, and showed significant decreases in nuclear factor-kappa B protein and mRNA levels following Shuanghuanglian injection. The inhibitory effect was more significant with prolonged intervention duration and increased treatment dose. These findings verify that Shuanghuanglian injection plays a therapeutic role in viral encephalitis by reducing expression of nuclear factor-kappa B in a time- and dose-dependent manner.展开更多
Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A(SAA)in mouse peritoneal macrophages.Methods Peritoneal macrophages were obtained from BALB/c mice.LPS induced nitric oxi...Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A(SAA)in mouse peritoneal macrophages.Methods Peritoneal macrophages were obtained from BALB/c mice.LPS induced nitric oxide(NO),tumor necrosis factor-alpha(TNF-α)and interleukin-6(IL-6)in supernatant,protein expression of inducible nitric oxide synthase(iNOS),matrix metalloproteinase-9(MMP-9)and activation of nuclear factor-kappa B(NF-κB)in the extract were measured.Results SAA strongly inhibited the excessive production of NO,TNF-α and IL-6 in LPS-induced peritoneal macrophages in a concentration-dependent manner and blocked the expression of iNOS and MMP-9.Treatment with LPS alone increased the translocation of NF-κB(p65)from cytosol to the nucleus,but the SAA inhibited the translocation of NF-κB(p65).Conclusions The results showed that SAA had strong anti-inflammatory effects in LPS-stimulated peritoneal macrophages.The important mechanism is due to its inhibition of NF-κB activation.展开更多
Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke,but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in trau...Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke,but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in traumatic brain injury.In this study we found that,in a mouse model of traumatic brain injury induced by controlled cortical impact,phosphatase actin regulatory factor 1 expression is increased in endothelial cells,neurons,astrocytes,and microglia.When we overexpressed phosphatase actin regulatory factor 1 by injection an adeno-associated virus vector into the contused area in the traumatic brain injury mice,the water content of the brain tissue increased.However,when phosphatase actin regulatory factor 1 was knocked down,the water content decreased.We also found that inhibiting phosphatase actin regulatory factor 1 expression regulated the nuclear factor kappa B signaling pathway,decreased blood-brain barrier permeability,reduced aquaporin 4 and intercellular adhesion molecule 1 expression,inhibited neuroinflammation,and neuronal apoptosis,thereby improving neurological function.The findings from this study indicate that phosphatase actin regulatory factor 1 may be a potential therapeutic target for traumatic brain injury.展开更多
BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignanc...BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignancies. We investigated the dynamic expression of NF-kappa B and its influences on the occurrence of HCC through antiangiogenic (thalidomide) intervention in NF-kappa B activation. METHODS : Hepatoma models were induced with 2-fluorenylacetamide (2-FAA, 0.05%) in male Sprague-Dawley rats, and thalidomide (100 mg/kg body weight) was administered intragastrically to intervene in NF-kappa B activation. The pathological changes in the liver of sacrificed rats were assessed after hematoxylin and eosin staining. NF-kappa B mRNA was amplified by RT-nested PCR. The alterations of NF-kappa B and vascular endothelial growth factor (VEGF) expression were analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting. RESULTS: Rat hepatocytes showed denatured, precancerous, and cancerous stages in hepatocarcinogenesis, with an increasing tendency of hepatic NF-kappa B, NF-kappa B mRNA, and VEGF expression, and their values in the HCC group were higher than those in controls (P<0.001). In the thalidomide-treated group, the morphologic changes generated only punctiform denaturation and necrosis at the early or middle stages, and nodular hyperplasia or a little atypical hyperplasia at the final stages, with the expression of NF-kappa B (chi(2)=9.93, P<0.001) and VEGF (chi(2)=8.024, P<0.001) lower than that in the 2-FAA group. CONCLUSION: NF-kappa B is overexpressed in hepatocarcinogenesis and antiangiogenic treatment down-regulates the expression of NF-kappa B and VEGF, and delays the occurrence of HCC. (Hepatobiliary Pancreat Dis Int 2010; 9: 169-174)展开更多
Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with...Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.展开更多
Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for...Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.展开更多
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, p...Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.展开更多
基金Supported by grants from National Natural Science Foundation of China, No. 30471614 (to DK Qiu) and No.30571730 (to X Ma)Shanghai Leading Academic Discipline Project, No.Y0205 (to X Ma)
文摘To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-KB) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-y, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-~:B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-~:B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration.
基金Supported by agrant from the National Natural Science Foundation of China(No.30271300).
文摘Objective:To determine whether NF-κB is constitutively activated in human bladder cancer cell and,if so,to deter-mine the invasiveness inhibition of bladder cancer cells by nuclear factor-κB decoy—circular dumbbell oligodeoxynucleotides(CD-ODN).Methods:NF-κBp65 activation was determined by immunohistochemical analysis of formalin-fixed,paraffin-embed-ded specimens from 38 cases of bladder transitional cell carcinoma patients.We quantified nuclear staining of RelA as a marker of NF-κBp65 activation.CD-ODN were transfected into human bladder cancer cell line BIU87 by lipofectamine.Luciferase reporter were applied to detecting NF-κB DNA binding activity.The expression levels of uPA were detected by RT-PCR and the cells’ invasion ability by transwell cell culture chamber.Results:P65 excessive activation existed in tumor cell(P<0.01),the activation degree correlated significantly with the expression of uPA(r=0.89,P<0.01),as well as related to tumor invasion-related clinicopathological features such as lymphatic metastasis(P<0.01)and pathological ranking(P<0.05);After transfection with CD-ODN,the activation of NF-κB in BIU87 cell line was suppressed remarkably,the expression level of uPA was decreased and the cells’ invasiveness was weakened as well.Conclusion:Excessively activated NF-κB is related to tumor progression pos-sibly due to its transcriptional regulation of invasion-related factors such as uPA.CD-ODN can efficiently suppress DNA binding activity of NF-κB to reduce the invasive potency of tumor.
基金supported by the National Natural Science Foundation of China,No.81572191(to LC)and 81601067(to HZ)
文摘Progranulin is closely related to neuronal survival in a neuroinflammatory mouse model and attenuates inflammatory reactions. Atsttrin is an engineered protein composed of three progranulin fragments and has been shown to have an effect similar to that of progranulin. Atsttrin has anti-inflammatory actions in multiple arthritis mouse models, and it protects against further arthritis development. However, whether Atsttrin has a role in neuroinflammation remains to be elucidated. In this study, we produced a neuroinflammatory mouse model by intracerebroventricular injection of 1 μL lipopolysaccharide(10 μg/μL). Atsttrin(2.5 mg/kg) was administered via intraperitoneal injection every 3 days over a period of 7 days before intracerebroventricular injection of 1 μL lipopolysaccharide(10 μg/μL). In addition, astrocyte cultures were treated with 0, 100 or 300 ng/mL lipopolysaccharide, with 200 ng/mL Atsttrin simultaneously. Immunohistochemistry, enzyme-linked immunosorbent assay and real-time reverse transcription-polymerase chain reaction were performed to examine the protein and mRNA levels of inflammatory mediators and to assess activation of the nuclear factor kappa B signaling pathway. Progranulin expression in the brain of wild-type mice and in astrocyte cultures was increased after lipopolysaccharide administration. The protein and mRNA expression levels of tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were increased in the brain of progranulin knockout mice after lipopolysaccharide administration. Atsttrin treatment reduced the lipopolysaccharide-induced increase in the protein and mRNA levels of tumor necrosis factor-α, interleukin-1β, matrix metalloproteinase-3 and inducible nitric oxide synthase in the brain of progranulin knockout mice. Atsttrin also reduced the expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix metalloproteinase 3 mRNA in lipopolysaccharide-treated astrocytes in vitro, and decreased the concentration of tumor necrosis factor α and interleukin-1β in the supernatant. Furthermore, Atsttrin significantly reduced the levels of phospho-nuclear factor kappa B inhibitor α in the brain of lipopolysaccharide-treated progranulin knockout mice and astrocytes, and it decreased the expression of nuclear factor kappa B2 in astrocytes. Collectively, our findings show that the anti-neuroinflammatory effect of Atsttrin involves inhibiton of the nuclear factor kappa B signaling pathway, and they suggest that Atsttrin may have clinical potential in neuroinflammatory therapy.
文摘This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury, compared with normal saline-treated rats. This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury. Overall, the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.
基金the National Natural Science Foundation of China(No.30670842)the Natural Science Foundation of Guangdong Province,China(No.5300582).
文摘We have observed earlier that testosterone at physiological concentrations can stimulate tissue factor pathway inhibitor(TFPI)gene expression through the androgen receptor in endothelial cells.This study further investigated the impact of testosterone on TFPI levels in response to inflammatory cytokine tumor necrosis factor-alpha(TNF-α).Cultured human umbilical vein endothelial cells were incubated in the presence or absence of testosterone or TNF-α.TFPI protein and mRNA levels were assessed by enzyme-linked immunosorbent assay and quantitative real-time reverse transcription polymerase chain reaction.To study the cellular mechanism of testosterone’s action,nuclear factor-kappa B(NF-κB)translocation was confirmed by electrophoretic mobility shift assays.We found that after NF-κB was activated by TNF-α,TFPI protein levels declined significantly by 37.3%compared with controls(P<0.001),and the mRNA levels of TFPI also decreased greatly(P<0.001).A concentration of 30 nmol L-1 testosterone increased the secretion of TFPI compared with the TNF-α-treated group.NF-κB DNA-binding activity was significantly suppressed by testosterone(P<0.05).This suggests that physiological testosterone concentrations may exert their antithrombotic effects on TFPI expression during inflammation by downregulating NF-κB activity.
文摘BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and its related target genes and products such as vascular endothelial cell adhesion molecule and CXC chemokines. We aimed to assess the roles of those mediators in a UTI-treated mouse model of hepatic I/R injury. METHODS: Treatment group 1 (UTI given 5 minutes prior to liver ischemia), treatment group 2 (UTI given 5 minutes after the anhepatic phase) and a control group were investigated. Blood and liver samples were obtained and compared at 1, 3, 6 and 24 hours after reperfusion. RESULTS: Attenuation of pathological hepatocellular damage was greater in the treatment groups than in the control group (P < 0.05). Compared with the control group, the UTI treatment groups showed significantly lower serum alanine aminotransferase and aspartate aminotransferase levels, decreased myeloperoxidase activity, and reduced NF-kappa B activation. Also downregulated was the expression of tumor necrosis factor-alpha, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2 at the mRNA level. P-selectin protein and intercellular adhesion molecule-1 protein expression were also downregulated. In addition, the treatment group I showed a better protective effect against I/R injury than the treatment group 2. CONCLUSIONS: UTI reduces NF-kappa B activation and downregulates the expression of its related mediators, followed by the inhibition of neutrophil aggregation and infiltration in hepatic I/R injury. The protective role of UTI is more effective in prevention than in treatment.
基金the Health Research Fund from Health Department of Shaanxi Province,China,No. 04015
文摘Previous studies have confirmed that the anti-virus effects of Shuanghuanglian injection may be associated with nuclear factor-kappa B activity. This study observed nuclear factor-kappa B expression in mice with viral encephalitis, and showed significant decreases in nuclear factor-kappa B protein and mRNA levels following Shuanghuanglian injection. The inhibitory effect was more significant with prolonged intervention duration and increased treatment dose. These findings verify that Shuanghuanglian injection plays a therapeutic role in viral encephalitis by reducing expression of nuclear factor-kappa B in a time- and dose-dependent manner.
文摘Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A(SAA)in mouse peritoneal macrophages.Methods Peritoneal macrophages were obtained from BALB/c mice.LPS induced nitric oxide(NO),tumor necrosis factor-alpha(TNF-α)and interleukin-6(IL-6)in supernatant,protein expression of inducible nitric oxide synthase(iNOS),matrix metalloproteinase-9(MMP-9)and activation of nuclear factor-kappa B(NF-κB)in the extract were measured.Results SAA strongly inhibited the excessive production of NO,TNF-α and IL-6 in LPS-induced peritoneal macrophages in a concentration-dependent manner and blocked the expression of iNOS and MMP-9.Treatment with LPS alone increased the translocation of NF-κB(p65)from cytosol to the nucleus,but the SAA inhibited the translocation of NF-κB(p65).Conclusions The results showed that SAA had strong anti-inflammatory effects in LPS-stimulated peritoneal macrophages.The important mechanism is due to its inhibition of NF-κB activation.
基金supported by the National Natural Science Foundation of China,Nos.81501048(to JD),81801236(to ZMX),81974189(to HLT)Shanghai 6th People’s Hospital Research Fund,No.ynlc201808(to JD).
文摘Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke,but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in traumatic brain injury.In this study we found that,in a mouse model of traumatic brain injury induced by controlled cortical impact,phosphatase actin regulatory factor 1 expression is increased in endothelial cells,neurons,astrocytes,and microglia.When we overexpressed phosphatase actin regulatory factor 1 by injection an adeno-associated virus vector into the contused area in the traumatic brain injury mice,the water content of the brain tissue increased.However,when phosphatase actin regulatory factor 1 was knocked down,the water content decreased.We also found that inhibiting phosphatase actin regulatory factor 1 expression regulated the nuclear factor kappa B signaling pathway,decreased blood-brain barrier permeability,reduced aquaporin 4 and intercellular adhesion molecule 1 expression,inhibited neuroinflammation,and neuronal apoptosis,thereby improving neurological function.The findings from this study indicate that phosphatase actin regulatory factor 1 may be a potential therapeutic target for traumatic brain injury.
基金supported by grants from the Project of Elitist Peak in Six Fields(No.2006-B-063)the Project of Medical Sciences(H200727),the Bureau of Health,Jiangsu Province,China
文摘BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignancies. We investigated the dynamic expression of NF-kappa B and its influences on the occurrence of HCC through antiangiogenic (thalidomide) intervention in NF-kappa B activation. METHODS : Hepatoma models were induced with 2-fluorenylacetamide (2-FAA, 0.05%) in male Sprague-Dawley rats, and thalidomide (100 mg/kg body weight) was administered intragastrically to intervene in NF-kappa B activation. The pathological changes in the liver of sacrificed rats were assessed after hematoxylin and eosin staining. NF-kappa B mRNA was amplified by RT-nested PCR. The alterations of NF-kappa B and vascular endothelial growth factor (VEGF) expression were analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting. RESULTS: Rat hepatocytes showed denatured, precancerous, and cancerous stages in hepatocarcinogenesis, with an increasing tendency of hepatic NF-kappa B, NF-kappa B mRNA, and VEGF expression, and their values in the HCC group were higher than those in controls (P<0.001). In the thalidomide-treated group, the morphologic changes generated only punctiform denaturation and necrosis at the early or middle stages, and nodular hyperplasia or a little atypical hyperplasia at the final stages, with the expression of NF-kappa B (chi(2)=9.93, P<0.001) and VEGF (chi(2)=8.024, P<0.001) lower than that in the 2-FAA group. CONCLUSION: NF-kappa B is overexpressed in hepatocarcinogenesis and antiangiogenic treatment down-regulates the expression of NF-kappa B and VEGF, and delays the occurrence of HCC. (Hepatobiliary Pancreat Dis Int 2010; 9: 169-174)
文摘Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.
文摘Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.
基金supported by the Leibniz Association,Germany,and the VELUX Foundation,Switzerland
文摘Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.