BACKGROUND Cancerous inhibitor of protein phosphatase 2A(CIP2A)is a newly discovered oncogene.It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer(GC)cells.CIP2A is func...BACKGROUND Cancerous inhibitor of protein phosphatase 2A(CIP2A)is a newly discovered oncogene.It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer(GC)cells.CIP2A is functionally related to chemoresistance in various types of tumors according to recent studies.The underlying mechanism,however,is unknown.Further,the primary treatment regimen for GC is oxaliplatin-based chemotherapy.Nonetheless,it often fails due to chemoresistance of GC cells to oxaliplatin.AIM The goal of this study was to examine CIP2A expression and its association with oxaliplatin resistance in human GC cells.METHODS Immunohistochemistry was used to examine CIP2A expression in GC tissues and adjacent normal tissues.CIP2A expression in GC cell lines was reduced using small interfering RNA.After confirming the silencing efficiency,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium and flow cytometry assays were used to evaluate cell proliferation and apoptosis caused by oxaliplatin treatment.Further,the key genes and protein changes were verified using realtime quantitative reverse transcription PCR and Western blotting,respectively,before and after intervention.For bioinformatics analysis,we used the R software and Bioconductor project.For statistical analysis,we used GraphPad Prism 6.0 and the Statistical Package for the Social Sciences software version 20.0(IBM,Armonk,United States).RESULTS A high level of CIP2A expression was associated with tumor size,T stage,lymph node metastasis,Tumor Node Metastasis stage,and a poor prognosis.Further,CIP2A expression was higher in GC cells than in normal human gastric epithelial cells.Using small interfering RNA against CIP2A,we discovered that CIP2A knockdown inhibited cell proliferation and significantly increased GC cell sensitivity to oxaliplatin.Moreover,CIP2A knockdown enhanced oxaliplatin-induced apoptosis in GC cells.Hence,high CIP2A levels in GC may be a factor in chemoresistance to oxaliplatin.In human GC cells,CIP2A regulated protein kinase B phosphorylation,and chemical inhibition of the protein kinase B signaling pathway was significantly associated with increased sensitivity to oxaliplatin.Therefore,the protein kinase B signaling pathway was correlated with CIP2Aenhanced chemoresistance of human GC cells to oxaliplatin.CONCLUSION CIP2A expression could be a novel therapeutic strategy for chemoresistance in GC.展开更多
Reversible phosphorylation and dephosphorylation play important roles in cell function and cell signal transduction. PPP2R5A (protein phosphatase 2 regulatory subunit B’ alpha) is responsible for specifically regulat...Reversible phosphorylation and dephosphorylation play important roles in cell function and cell signal transduction. PPP2R5A (protein phosphatase 2 regulatory subunit B’ alpha) is responsible for specifically regulating the catalytic function, substrate specificity and intracellular localization of the tumor suppressor phosphatase PP2A (serine/threonine protein phosphatase 2A). Therefore, the abnormal expression and function of PPP2R5A may be related to canceration. The aim of this study was to reveal its role in the occurrence and development of hepatocellular carcinoma (HCC). It is hoped that the results of this study can provide guidance for the prevention and treatment of HCC. The results showed that PPP2R5A inhibited the proliferation and metastasis of HCC cells, and acted as a tumor suppressor in HCC cells, but it had no significant effect on cell cycle. Further research found that PPP2R5A exerted tumor suppressor efficacy by inhibiting the MAPK/AKT/WNT signaling pathway. Combined with analysis of clinical tissue samples and TCGA database, it was found that the expression of PPP2R5A in tumor tissues of Chinese HCC patients was down-regulated and significantly correlated with the progression-free survival (PFS) of HCC patients. On the contrary, PPP2R5A showed an up-regulation trend in HCC cases in TCGA database although its effect on PFS was the same with that in Chinese HCC patients. Hepatitis B virus (HBV) infection is the main pathogenic factor of HCC in China. It was found that HBV infection reduced the content of PPP2R5A in cells. It was concluded that HBV inhibited the initiation of the protective mechanism mediated by PPP2R5A, making the occurrence and progress of HCC more “unimpeded”. This conclusion will further reveal the role of PPP2R5A in HBV-induced and HBV-unrelated HCC, therefore, providing clues for the prevention and treatment of the two types of HCC, respectively.展开更多
背景与目的:蛋白磷酸酶2A抑制剂-2(inhibitor 2 of protein phosphatase 2A,I2PP2A)在包括胃癌的多种肿瘤中过度表达,提示其可能在胃癌的发生中发挥重要作用。为进一步探讨I2PP2A的功能及其在胃癌发生中的作用,建立稳定抑制I2PP2A基因...背景与目的:蛋白磷酸酶2A抑制剂-2(inhibitor 2 of protein phosphatase 2A,I2PP2A)在包括胃癌的多种肿瘤中过度表达,提示其可能在胃癌的发生中发挥重要作用。为进一步探讨I2PP2A的功能及其在胃癌发生中的作用,建立稳定抑制I2PP2A基因表达的人胃癌BGC823细胞株。方法:筛选出I2PP2A基因的RNA干扰(RNA interference,RNAi)有效靶序列,合成靶序列的Oligo DNA并构建p GLV2_sh RNA_I2PP2A慢病毒载体,酶切和测序鉴定正确后,经病毒包装,感染BGC823细胞,经嘌呤霉素筛选稳定表达细胞株,通过实时定量PCR(real-time PCR,RT-PCR)和蛋白[质]印迹法(Western blot)鉴定I2PP2A的表达。结果:重组慢病毒质粒经测序鉴定正确;RT-PCR和Western blot证实干扰I2PP2A后,BGC823细胞株中I2PP2A表达水平明显降低,抑制率约为90%。结论:成功构建了I2PP2A sh RNA慢病毒表达载体,建立了稳定抑制I2PP2A基因表达的人胃癌BGC823细胞株,为进一步研究I2PP2A在胃癌发生中的作用提供了可靠的细胞模型。展开更多
Protein phosphatases play essential roles as negative regulators of kinases and signaling cascades involved in cytoskeletal organization.Protein phosphatase 2A(PP2A)is highly conserved and is the predominant serine/th...Protein phosphatases play essential roles as negative regulators of kinases and signaling cascades involved in cytoskeletal organization.Protein phosphatase 2A(PP2A)is highly conserved and is the predominant serine/threonine phosphatase in the nervous system,constituting more than 70%of all neuronal phosphatases.PP2A is involved in diverse regulatory functions,including cell cycle progression,apoptosis,and DNA repair.Although PP2A has historically been identified as a tumor suppressor,inhibition of PP2A has paradoxically demonstrated potential as a therapeutic target for various cancers.LB100,a water-soluble,small-molecule competitive inhibitor of PP2A,has shown particular promise as a chemo-and radio-sensitizing agent.Preclinical success has led to a profusion of clinical trials on LB100 adjuvant therapies,including a phase I trial in extensive-stage small-cell lung cancer,a phase I/II trial in myelodysplastic syndrome,a phase II trial in recurrent glioblastoma,and a completed phase I trial assessing the safety of LB100 and docetaxel in various relapsed solid tumors.Herein,we review the development of LB100,the role of PP2A in cancer biology,and recent advances in targeting PP2A inhibition in immunotherapy.展开更多
Type 2 diabetes mellitus is a metabolic disorder of deranged fat, protein and carbohydrate metabolism resulting in hyperglycemia as a result of insulin resistance and inadequate insulin secretion. Although a wide vari...Type 2 diabetes mellitus is a metabolic disorder of deranged fat, protein and carbohydrate metabolism resulting in hyperglycemia as a result of insulin resistance and inadequate insulin secretion. Although a wide variety of diabetes therapies is available, yet limited efficacy, adverse effects, cost, contraindications, renal dosage adjustments, inflexible dosing schedules and weight gain significantly limit their use. In addition, many patients in the United States fail to meet the therapeutic HbA1c goal of 【 7% set by the American Diabetes Association. As such new and emerging diabetes therapies with different mechanisms of action hope to address some of these drawbacks to improve the patient with type 2 diabetes. This article reviews new and emerging classes, including the sodium-glucosecotransporter-2 inhibitors, 11β-Hydroxysteroid dehydrogenase type 1 inhibitors, glycogen phosphorylase inhibitors; protein tyrosine phosphatase 1B inhibitors, G Protein-Coupled receptor agonists and glucokinase activators. These emerging diabetes agents hold the promise of providing benefit of glucose lowering, weight reduction, low hypoglycemia risk, improve insulin sensitivity, pancreatic β cell preservation, and oral formulation availability. However, further studies are needed to evaluate their safety profile, cardiovascular effects, and efficacy durability in order to determine their role in type 2 diabetes management.展开更多
Oleanolic acid derivatives act as newer protein tyrosine phosphatase 1B (PTP-1B) inhibitors for type 2 diabetes mellitus (T2DM). In order to understand the structural requirement of PTP-1B inhibitors, 52 oleanolic...Oleanolic acid derivatives act as newer protein tyrosine phosphatase 1B (PTP-1B) inhibitors for type 2 diabetes mellitus (T2DM). In order to understand the structural requirement of PTP-1B inhibitors, 52 oleanolic acid derivatives were divided into a training set (34 compounds) and a test set (18 compounds). The highly reliable and predictive 3D-QSAR models were constructed by CoMFA, CoMSIA and topomer CoMFA methods, respectively. The results showed that the cross validated coefficient (q2) and non-cross-validated coefficient (R2) were 0.554 and 0.999 in the CoMFA model, 0.675 and 0.971 in the CoMSIA model, and 0.628 and 0.939 in the topomer CoMFA model, which suggests that three models are robust and have good exterior predictive capabilities. Furthermore, ten novel inhibitors with much higher inhibitory potency were designed. Our design strategy was that (i) the electronegative substituents (Cl, -CH2OH, OH and -CH2Cl) were introduced into the double bond of ring C, (ii) the hydrogen bond acceptor groups (C≡N and N atom), electronegative groups (C≡N, N atom, -COOH and -COOCH3) and bulky substituents (C6H5N) were connected to the C-3 position, which would result in generating potent and selective PTP-1B inhibitors. We expect that the results in this paper have the potential to facilitate the process of design and to develop new potent PTP-1B inhibitors.展开更多
Drought seriously impacts wheat production(Triticum aestivum L.),while the exploitation and utilization of genes for drought tolerance are insufficient.Leaf wilting is a direct reflection of drought tolerance in plant...Drought seriously impacts wheat production(Triticum aestivum L.),while the exploitation and utilization of genes for drought tolerance are insufficient.Leaf wilting is a direct reflection of drought tolerance in plants.Clade A PP2Cs are abscisic acid(ABA)co-receptors playing vital roles in the ABA signaling pathway,regulating drought response.However,the roles of other clade PP2Cs in drought tolerance,especially in wheat,remain largely unknown.Here,we identified a gain-of-function drought-induced wilting 1(DIW1)gene from the wheat Aikang 58 mutant library by map-based cloning,which encodes a cladeⅠprotein phosphatase 2C(TaPP2C158)with enhanced protein phosphatase activity.Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance.We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it,thus inactivating the TaSnRK1.1–Ta AREB3 pathway.TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling.Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature,and seedling survival rate under drought stress.Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history.This work benefits us in understanding the molecular mechanism of wheat drought tolerance,and provides elite genetic resources and molecular markers for improving wheat drought tolerance.展开更多
Src homology-2-containing protein tyrosine phosphatase 2(SHP2)is a promising therapeutic target for cancer therapy.In this work,we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors...Src homology-2-containing protein tyrosine phosphatase 2(SHP2)is a promising therapeutic target for cancer therapy.In this work,we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors,leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent,selective,orally bioavailable allosteric SHP2 inhibitor(SHP2WT IC_(50)=2.7 nmol/L)with favorable pharmacokinetic profiles(F=42.5%;t_(1/2)=2.47 h).Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the“tunnel”allosteric site of SHP2.TK-642 could effectively suppress cell proliferation(KYSE-520 cells IC_(50)=5.73μmol/L)and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways.Additionally,oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model,with a T/C value of 83.69%.Collectively,TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.展开更多
Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory ...Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory cascade in response to local damage of the pancreas. Amplification of the inflammatory cascade requires up-regulation of proinflammatory cytokines and this process is mediated not only by nuclear factor κB but also by chromatinmodifying complexes and chromatin remodeling. Among the different families of histone acetyltransferases, the p300/CBP family seems to be particularly associated with the inflammatory process. cAMP activates gene expression via the cAMP-responsive element (CRE) and the transcription factor CRE-binding protein (CREB). CREB can be phosphorylated and activated by different kinases, such as protein kinase A and MAPK, and then it recruits the histone acetyltransferase co-activator CREB-binding protein (CBP) and its homologue p300. The recruitment of CBP/p300 and changes in the level of histone acetylation are required for transcription activation. Transcriptional repression is also a dynamic and essential mechanism of down-regulation of genes for resolution of inflammation, which seems to be mediated mainly by protein phosphatases (PP1, PP2A and MKP1) and histone deacetylases(HDACs) .Class HDACs are key transcriptional regulators whose activities are controlled via phosphorylationdependent nucleo/cytoplasmic shuttling. PP2A is responsible for dephosphorylation of class HDACs, triggeringnuclear localization and repression of target genes, whereas phosphorylation triggers cytoplasmic localization leading to activation of target genes. The potential benefit from treatment with phosphodiesterase inhibitors and histone deacetylase inhibitors is discussed.展开更多
Protein phosphorylation and dephosphorylation have been reported to play important roles in plant cold responses.In addition,phospho-regulatory feedback is a conserved mechanism for biological processes and stress res...Protein phosphorylation and dephosphorylation have been reported to play important roles in plant cold responses.In addition,phospho-regulatory feedback is a conserved mechanism for biological processes and stress responses in animals and plants.However,it is less well known that a regulatory feedback loop is formed by the protein kinase and the protein phosphatase in plant responses to cold stress.Here,we report that OPEN STOMATA 1(OST1)and PROTEIN PHOSPHATASE 2C G GROUP 1(PP2CG1)reciprocally regulate the activity during the cold stress response.The interaction of PP2CG1 and OST1 is inhibited by cold stress,which results in the release of OST1 at the cytoplasm and nucleus from suppression by PP2CG1.Interestingly,cold-activated OST1 phosphorylates PP2CG1 to suppress its phosphatase activity,thereby amplifying cold signaling in plants.Mutations of PP2CG1 and its homolog PP2CG2 enhance freezing tolerance,whereas overexpression of PP2CG1 decreases freezing tolerance.Moreover,PP2CG1 negatively regulates protein levels of C-REPEAT BINDING FACTORs(CBFs)under cold stress.Our results uncover a phosphor/dephosphor-regulatory feedback loop mediated by PP2CG1 phosphatase and OST1 protein kinase in plant cold responses.展开更多
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibi...Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.展开更多
Cancerous inhibitor of protein phosphatase 2A(CIP2A) is a human oncoprotein that is overexpressed in multiple kinds of cancers including non-small cell lung cancer(NSCLC). CIP2A plays an ’oncogenic nexus’ to partici...Cancerous inhibitor of protein phosphatase 2A(CIP2A) is a human oncoprotein that is overexpressed in multiple kinds of cancers including non-small cell lung cancer(NSCLC). CIP2A plays an ’oncogenic nexus’ to participate in the tumorigenesis and chemoresistance in several cancer types. AKT and m TORC1 overactivation are detected in NSCLC and many other cancers. Previous studies found that the CIP2A/AKT/m TOR pathway controls cell growth, apoptosis, autophagy process. Polyphyllin I(PPI) and polyphyllin VII(PPVII) are natural components extracted from Paris polyphylla that display anti-cancer properties. In the present study, we investigated whether PPI and PPVII can be used in the cisplatin(DDP)-resistant human NSCLC cell line A549/DDP. Results demonstrated that PPI and PPVII treatment significantly suppressed A549/DDP cell proliferation, migration, invasion and EMT, induced apoptosis and autophagy. Further examination of the mechanism revealed that the PPI and PPVII significantly upregulated the p53, induced caspase-dependent apoptosis and suppressed the CIP2A/AKT/m TOR pathway. The activation of autophagy was mediated through PPI and PPVII induced inhibition of m TOR. We propose that PPI and PPVII might be developed as candidate drugs for DDP-resistant NSCLC.展开更多
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis.The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the pl...The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis.The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms.We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells.Here,we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells.KATANIN undergoes cycles of phosphorylation and dephosphorylation.Using co-immunoprecipitation coupled with mass spectrometry,we identified PP2A subunits as KATANIN-interacting proteins.Further biochemical studies showed that PP2 A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance.Similar to the katanin mutant,mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape.Taken together,these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.展开更多
基金Supported by This work was supported by the Natural Science Foundation of Gansu Province,China,No.17JR5RA272 and No.22JR5RA923the Research Fund Project of The First Hospital of Lanzhou University,No.ldyyyn2021-120,No.ldyyyn2020-98 and No.ldyyyn2021-30.
文摘BACKGROUND Cancerous inhibitor of protein phosphatase 2A(CIP2A)is a newly discovered oncogene.It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer(GC)cells.CIP2A is functionally related to chemoresistance in various types of tumors according to recent studies.The underlying mechanism,however,is unknown.Further,the primary treatment regimen for GC is oxaliplatin-based chemotherapy.Nonetheless,it often fails due to chemoresistance of GC cells to oxaliplatin.AIM The goal of this study was to examine CIP2A expression and its association with oxaliplatin resistance in human GC cells.METHODS Immunohistochemistry was used to examine CIP2A expression in GC tissues and adjacent normal tissues.CIP2A expression in GC cell lines was reduced using small interfering RNA.After confirming the silencing efficiency,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium and flow cytometry assays were used to evaluate cell proliferation and apoptosis caused by oxaliplatin treatment.Further,the key genes and protein changes were verified using realtime quantitative reverse transcription PCR and Western blotting,respectively,before and after intervention.For bioinformatics analysis,we used the R software and Bioconductor project.For statistical analysis,we used GraphPad Prism 6.0 and the Statistical Package for the Social Sciences software version 20.0(IBM,Armonk,United States).RESULTS A high level of CIP2A expression was associated with tumor size,T stage,lymph node metastasis,Tumor Node Metastasis stage,and a poor prognosis.Further,CIP2A expression was higher in GC cells than in normal human gastric epithelial cells.Using small interfering RNA against CIP2A,we discovered that CIP2A knockdown inhibited cell proliferation and significantly increased GC cell sensitivity to oxaliplatin.Moreover,CIP2A knockdown enhanced oxaliplatin-induced apoptosis in GC cells.Hence,high CIP2A levels in GC may be a factor in chemoresistance to oxaliplatin.In human GC cells,CIP2A regulated protein kinase B phosphorylation,and chemical inhibition of the protein kinase B signaling pathway was significantly associated with increased sensitivity to oxaliplatin.Therefore,the protein kinase B signaling pathway was correlated with CIP2Aenhanced chemoresistance of human GC cells to oxaliplatin.CONCLUSION CIP2A expression could be a novel therapeutic strategy for chemoresistance in GC.
文摘Reversible phosphorylation and dephosphorylation play important roles in cell function and cell signal transduction. PPP2R5A (protein phosphatase 2 regulatory subunit B’ alpha) is responsible for specifically regulating the catalytic function, substrate specificity and intracellular localization of the tumor suppressor phosphatase PP2A (serine/threonine protein phosphatase 2A). Therefore, the abnormal expression and function of PPP2R5A may be related to canceration. The aim of this study was to reveal its role in the occurrence and development of hepatocellular carcinoma (HCC). It is hoped that the results of this study can provide guidance for the prevention and treatment of HCC. The results showed that PPP2R5A inhibited the proliferation and metastasis of HCC cells, and acted as a tumor suppressor in HCC cells, but it had no significant effect on cell cycle. Further research found that PPP2R5A exerted tumor suppressor efficacy by inhibiting the MAPK/AKT/WNT signaling pathway. Combined with analysis of clinical tissue samples and TCGA database, it was found that the expression of PPP2R5A in tumor tissues of Chinese HCC patients was down-regulated and significantly correlated with the progression-free survival (PFS) of HCC patients. On the contrary, PPP2R5A showed an up-regulation trend in HCC cases in TCGA database although its effect on PFS was the same with that in Chinese HCC patients. Hepatitis B virus (HBV) infection is the main pathogenic factor of HCC in China. It was found that HBV infection reduced the content of PPP2R5A in cells. It was concluded that HBV inhibited the initiation of the protective mechanism mediated by PPP2R5A, making the occurrence and progress of HCC more “unimpeded”. This conclusion will further reveal the role of PPP2R5A in HBV-induced and HBV-unrelated HCC, therefore, providing clues for the prevention and treatment of the two types of HCC, respectively.
文摘背景与目的:蛋白磷酸酶2A抑制剂-2(inhibitor 2 of protein phosphatase 2A,I2PP2A)在包括胃癌的多种肿瘤中过度表达,提示其可能在胃癌的发生中发挥重要作用。为进一步探讨I2PP2A的功能及其在胃癌发生中的作用,建立稳定抑制I2PP2A基因表达的人胃癌BGC823细胞株。方法:筛选出I2PP2A基因的RNA干扰(RNA interference,RNAi)有效靶序列,合成靶序列的Oligo DNA并构建p GLV2_sh RNA_I2PP2A慢病毒载体,酶切和测序鉴定正确后,经病毒包装,感染BGC823细胞,经嘌呤霉素筛选稳定表达细胞株,通过实时定量PCR(real-time PCR,RT-PCR)和蛋白[质]印迹法(Western blot)鉴定I2PP2A的表达。结果:重组慢病毒质粒经测序鉴定正确;RT-PCR和Western blot证实干扰I2PP2A后,BGC823细胞株中I2PP2A表达水平明显降低,抑制率约为90%。结论:成功构建了I2PP2A sh RNA慢病毒表达载体,建立了稳定抑制I2PP2A基因表达的人胃癌BGC823细胞株,为进一步研究I2PP2A在胃癌发生中的作用提供了可靠的细胞模型。
基金the NIH Medical Research Scholars Program, a public-private partnership supported jointly by the NIH and contributions to the Foundation for the NIH from the Doris Duke Charitable Foundationthe American Association for Dental Research+2 种基金the Colgate-Palmolive Companyprivate donorssupported partly by the Intramural Research Program at the National Cancer Institute at the NIH
文摘Protein phosphatases play essential roles as negative regulators of kinases and signaling cascades involved in cytoskeletal organization.Protein phosphatase 2A(PP2A)is highly conserved and is the predominant serine/threonine phosphatase in the nervous system,constituting more than 70%of all neuronal phosphatases.PP2A is involved in diverse regulatory functions,including cell cycle progression,apoptosis,and DNA repair.Although PP2A has historically been identified as a tumor suppressor,inhibition of PP2A has paradoxically demonstrated potential as a therapeutic target for various cancers.LB100,a water-soluble,small-molecule competitive inhibitor of PP2A,has shown particular promise as a chemo-and radio-sensitizing agent.Preclinical success has led to a profusion of clinical trials on LB100 adjuvant therapies,including a phase I trial in extensive-stage small-cell lung cancer,a phase I/II trial in myelodysplastic syndrome,a phase II trial in recurrent glioblastoma,and a completed phase I trial assessing the safety of LB100 and docetaxel in various relapsed solid tumors.Herein,we review the development of LB100,the role of PP2A in cancer biology,and recent advances in targeting PP2A inhibition in immunotherapy.
文摘Type 2 diabetes mellitus is a metabolic disorder of deranged fat, protein and carbohydrate metabolism resulting in hyperglycemia as a result of insulin resistance and inadequate insulin secretion. Although a wide variety of diabetes therapies is available, yet limited efficacy, adverse effects, cost, contraindications, renal dosage adjustments, inflexible dosing schedules and weight gain significantly limit their use. In addition, many patients in the United States fail to meet the therapeutic HbA1c goal of 【 7% set by the American Diabetes Association. As such new and emerging diabetes therapies with different mechanisms of action hope to address some of these drawbacks to improve the patient with type 2 diabetes. This article reviews new and emerging classes, including the sodium-glucosecotransporter-2 inhibitors, 11β-Hydroxysteroid dehydrogenase type 1 inhibitors, glycogen phosphorylase inhibitors; protein tyrosine phosphatase 1B inhibitors, G Protein-Coupled receptor agonists and glucokinase activators. These emerging diabetes agents hold the promise of providing benefit of glucose lowering, weight reduction, low hypoglycemia risk, improve insulin sensitivity, pancreatic β cell preservation, and oral formulation availability. However, further studies are needed to evaluate their safety profile, cardiovascular effects, and efficacy durability in order to determine their role in type 2 diabetes management.
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2013GXNSFAA019019 and 2013GXNSFAA019041)
文摘Oleanolic acid derivatives act as newer protein tyrosine phosphatase 1B (PTP-1B) inhibitors for type 2 diabetes mellitus (T2DM). In order to understand the structural requirement of PTP-1B inhibitors, 52 oleanolic acid derivatives were divided into a training set (34 compounds) and a test set (18 compounds). The highly reliable and predictive 3D-QSAR models were constructed by CoMFA, CoMSIA and topomer CoMFA methods, respectively. The results showed that the cross validated coefficient (q2) and non-cross-validated coefficient (R2) were 0.554 and 0.999 in the CoMFA model, 0.675 and 0.971 in the CoMSIA model, and 0.628 and 0.939 in the topomer CoMFA model, which suggests that three models are robust and have good exterior predictive capabilities. Furthermore, ten novel inhibitors with much higher inhibitory potency were designed. Our design strategy was that (i) the electronegative substituents (Cl, -CH2OH, OH and -CH2Cl) were introduced into the double bond of ring C, (ii) the hydrogen bond acceptor groups (C≡N and N atom), electronegative groups (C≡N, N atom, -COOH and -COOCH3) and bulky substituents (C6H5N) were connected to the C-3 position, which would result in generating potent and selective PTP-1B inhibitors. We expect that the results in this paper have the potential to facilitate the process of design and to develop new potent PTP-1B inhibitors.
基金funded by the National Natural Science Foundation of China(32061143040)the Agricultural Science and Technology Innovation Program(ZDRW202002)the Central Public-interest Scientific Institution Basal Research Fund(Y2022GH06)。
文摘Drought seriously impacts wheat production(Triticum aestivum L.),while the exploitation and utilization of genes for drought tolerance are insufficient.Leaf wilting is a direct reflection of drought tolerance in plants.Clade A PP2Cs are abscisic acid(ABA)co-receptors playing vital roles in the ABA signaling pathway,regulating drought response.However,the roles of other clade PP2Cs in drought tolerance,especially in wheat,remain largely unknown.Here,we identified a gain-of-function drought-induced wilting 1(DIW1)gene from the wheat Aikang 58 mutant library by map-based cloning,which encodes a cladeⅠprotein phosphatase 2C(TaPP2C158)with enhanced protein phosphatase activity.Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance.We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it,thus inactivating the TaSnRK1.1–Ta AREB3 pathway.TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling.Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature,and seedling survival rate under drought stress.Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history.This work benefits us in understanding the molecular mechanism of wheat drought tolerance,and provides elite genetic resources and molecular markers for improving wheat drought tolerance.
基金the financial support from the Natural Science Foundation of China(Nos.U21A20416,32371317,22277110,and 82104279)Natural Science Foundation of Henan Province(No.222300420069,China)+1 种基金“Chunhui Plan”Cooperative Scientific Research Project of the Ministry of Education(No.HZKY20220280,China)State Key Laboratory of Pharmaceutical Biotechnology,Nanjing University(KF-202303,China)。
文摘Src homology-2-containing protein tyrosine phosphatase 2(SHP2)is a promising therapeutic target for cancer therapy.In this work,we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors,leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent,selective,orally bioavailable allosteric SHP2 inhibitor(SHP2WT IC_(50)=2.7 nmol/L)with favorable pharmacokinetic profiles(F=42.5%;t_(1/2)=2.47 h).Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the“tunnel”allosteric site of SHP2.TK-642 could effectively suppress cell proliferation(KYSE-520 cells IC_(50)=5.73μmol/L)and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways.Additionally,oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model,with a T/C value of 83.69%.Collectively,TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.
基金Supported by Grants SAF2006-06963, SAF2009-09500 and Consolider CSD-2007-00020 to Sastre J BFU2007-63120 and CSD2006-49 to López-Rodas G
文摘Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory cascade in response to local damage of the pancreas. Amplification of the inflammatory cascade requires up-regulation of proinflammatory cytokines and this process is mediated not only by nuclear factor κB but also by chromatinmodifying complexes and chromatin remodeling. Among the different families of histone acetyltransferases, the p300/CBP family seems to be particularly associated with the inflammatory process. cAMP activates gene expression via the cAMP-responsive element (CRE) and the transcription factor CRE-binding protein (CREB). CREB can be phosphorylated and activated by different kinases, such as protein kinase A and MAPK, and then it recruits the histone acetyltransferase co-activator CREB-binding protein (CBP) and its homologue p300. The recruitment of CBP/p300 and changes in the level of histone acetylation are required for transcription activation. Transcriptional repression is also a dynamic and essential mechanism of down-regulation of genes for resolution of inflammation, which seems to be mediated mainly by protein phosphatases (PP1, PP2A and MKP1) and histone deacetylases(HDACs) .Class HDACs are key transcriptional regulators whose activities are controlled via phosphorylationdependent nucleo/cytoplasmic shuttling. PP2A is responsible for dephosphorylation of class HDACs, triggeringnuclear localization and repression of target genes, whereas phosphorylation triggers cytoplasmic localization leading to activation of target genes. The potential benefit from treatment with phosphodiesterase inhibitors and histone deacetylase inhibitors is discussed.
基金This work was supported by the National Key Research and Development Project(2020YFA0509902)the National Natural Science Foundation of China(31730011,31970295,31921001),and Beijing Outstanding University Discipline Program.
文摘Protein phosphorylation and dephosphorylation have been reported to play important roles in plant cold responses.In addition,phospho-regulatory feedback is a conserved mechanism for biological processes and stress responses in animals and plants.However,it is less well known that a regulatory feedback loop is formed by the protein kinase and the protein phosphatase in plant responses to cold stress.Here,we report that OPEN STOMATA 1(OST1)and PROTEIN PHOSPHATASE 2C G GROUP 1(PP2CG1)reciprocally regulate the activity during the cold stress response.The interaction of PP2CG1 and OST1 is inhibited by cold stress,which results in the release of OST1 at the cytoplasm and nucleus from suppression by PP2CG1.Interestingly,cold-activated OST1 phosphorylates PP2CG1 to suppress its phosphatase activity,thereby amplifying cold signaling in plants.Mutations of PP2CG1 and its homolog PP2CG2 enhance freezing tolerance,whereas overexpression of PP2CG1 decreases freezing tolerance.Moreover,PP2CG1 negatively regulates protein levels of C-REPEAT BINDING FACTORs(CBFs)under cold stress.Our results uncover a phosphor/dephosphor-regulatory feedback loop mediated by PP2CG1 phosphatase and OST1 protein kinase in plant cold responses.
基金a Ph D fellowship by FCT-Fundacao para a Ciência Tecnologia (SFRH/BD/135868/2018)(to SSC)。
文摘Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
基金supported by the National Natural Science Foundation of China(No.81473485)the Natural Science Foundation of Shandong Province(No.2014ZRE27321)
文摘Cancerous inhibitor of protein phosphatase 2A(CIP2A) is a human oncoprotein that is overexpressed in multiple kinds of cancers including non-small cell lung cancer(NSCLC). CIP2A plays an ’oncogenic nexus’ to participate in the tumorigenesis and chemoresistance in several cancer types. AKT and m TORC1 overactivation are detected in NSCLC and many other cancers. Previous studies found that the CIP2A/AKT/m TOR pathway controls cell growth, apoptosis, autophagy process. Polyphyllin I(PPI) and polyphyllin VII(PPVII) are natural components extracted from Paris polyphylla that display anti-cancer properties. In the present study, we investigated whether PPI and PPVII can be used in the cisplatin(DDP)-resistant human NSCLC cell line A549/DDP. Results demonstrated that PPI and PPVII treatment significantly suppressed A549/DDP cell proliferation, migration, invasion and EMT, induced apoptosis and autophagy. Further examination of the mechanism revealed that the PPI and PPVII significantly upregulated the p53, induced caspase-dependent apoptosis and suppressed the CIP2A/AKT/m TOR pathway. The activation of autophagy was mediated through PPI and PPVII induced inhibition of m TOR. We propose that PPI and PPVII might be developed as candidate drugs for DDP-resistant NSCLC.
基金financially supported by grants from the Natural Science Foundation of Fujian Province(2018J01600)the National Natural Science Foundation of China(31822003,31771344,and 31500160)。
文摘The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis.The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms.We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells.Here,we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells.KATANIN undergoes cycles of phosphorylation and dephosphorylation.Using co-immunoprecipitation coupled with mass spectrometry,we identified PP2A subunits as KATANIN-interacting proteins.Further biochemical studies showed that PP2 A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance.Similar to the katanin mutant,mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape.Taken together,these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.