Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF i...Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma.展开更多
Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such pept...Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.展开更多
One new spirocyclic alkaloid,5-isopentenyl-cryptoechinuline D(1),along with 11 known compounds(2–12),were iso-lated from a marine fungus Aspergillus ruber TX-M4-1.The structures of compounds 1–12 were elucidated by ...One new spirocyclic alkaloid,5-isopentenyl-cryptoechinuline D(1),along with 11 known compounds(2–12),were iso-lated from a marine fungus Aspergillus ruber TX-M4-1.The structures of compounds 1–12 were elucidated by spectroscopic evi-dences.Compound 1 was initially isolated as an enantiomer,and further separation of 1 by chiral HPLC afforded a pair of enantio-mers,including(-)-5-isopentenyl-cryptoechinuline D(1a)and(+)-5-isopentenyl-cryptoechinuline D(1b).Their absolute configura-tions were elucidated by ECD spectroscopic data.Compounds 1a,5 and 10 could inhibit thioredoxin reductase(TrxR)activity with IC50 values of 6.2,36.3 and 18.6μmol L^(-1),respectively.Surface plasmon resonance(SPR)study also demonsrated the interactions between compounds 6,8 and Niemann-Pick C1 Like 1(NPC1L1)respectively,which indicate that compounds 6 and 8 are potential NPC1L1 inhibitors.展开更多
Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation.Overproduced chemokines are responsible for the migratory process of the leukoc...Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation.Overproduced chemokines are responsible for the migratory process of the leukocytes,but the regulatory mechanism underlying the production of chemokines from resident cells of the spinal cord has not been fully elucidated.We examined the protein levels of macrophage migration inhibitory factor and chemokine C-C motif chemokine ligand 2 in a spinal cord contusion model at different time points following spinal cord injury.The elevation of macrophage migration inhibitory factor at the lesion site coincided with the increase of chemokine C-C motif chemokine ligand 2 abundance in astrocytes.Stimulation of primary cultured astrocytes with different concentrations of macrophage migration inhibitory factor recombinant protein induced chemokine C-C motif chemokine ligand 2 production from the cells,and the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine attenuated the stimulatory effect.Further investigation into the underlying mechanism on macrophage migration inhibitory factor-mediated astrocytic production of chemokine C-C motif chemokine ligand 2 revealed that macrophage migration inhibitory factor activated intracellular JNK signaling through binding with CD74 receptor.Administration of the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine following spinal cord injury resulted in the reduction of chemokine C-C motif chemokine ligand 2-recruited microglia/macrophages at the lesion site and remarkably improved the hindlimb locomotor function of rats.Our results have provided insights into the functions of astrocyte-activated chemokines in the recruitment of leukocytes and may be beneficial to develop interventions targeting chemokine C-C motif chemokine ligand 2 for neuroinflammation after spinal cord injury.展开更多
Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which respon...Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which response of the receiver neuron appears before stimulation of the sender neuron,showing an interesting function of brain to anticipate the future.The dynamical mechanism for the AS remains unclear due to complex dynamics of inhibitory and excitatory modulations.In this article,the paradoxical roles of excitatory synapse and inhibitory autapse in the formation of AS are acquired.Firstly,in addition to the common roles such that inhibitory modulation delays and excitatory modulation advances spike,paradoxical roles of excitatory stimulation to delay spike via type-II phase response and of inhibitory autapse to advance spike are obtained in suitable parameter regions,extending the dynamics and functions of the excitatory and inhibitory modulations.Secondly,AS is related to the paradoxical roles of the excitatory and inhibitory modulations,presenting deep understandings to the AS.Inhibitory autapse induces spike of the receiver neuron advanced to appear before that of the sender neuron at first,and then excitatory synapse plays a delay role to prevent the spike further advanced,resulting in the AS as the advance and delay effects realize a dynamic balance.Lastly,inhibitory autapse with strong advance,middle advance,and weak advance and delay effects induce phase drift(spike of the receiver neuron advances continuously),AS,and DS,respectively,presenting comprehensive relationships between AS and other behaviors.The results present potential measures to modulate AS related to brain function.展开更多
Fermented foods are a potential source to produce novel dipeptidyl peptidase-IV inhibitory peptides(D4IPs).In this study,the fermented mandarin fish(Chouguiyu)was used to screen D4IPs and their formation mechanism was...Fermented foods are a potential source to produce novel dipeptidyl peptidase-IV inhibitory peptides(D4IPs).In this study,the fermented mandarin fish(Chouguiyu)was used to screen D4IPs and their formation mechanism was studied by metagenomics and peptidomics.A total of 400 D4IPs with DPP-IV inhibition structure and high hydrophobicity were identified.The correlation network map showed that Lactococcus,Bacillus,Lysobacter,Pelagivirga,Kocuria,Escherichia,Streptococcus,and Peptostreptococcus were significantly correlated with the most D4IPs.Four stable D4IPs,including KAGARALTDAETAT,GEKVDFDDIQK,VVDADEMYLKGK,and GQKDSYVGDEAQ were respectively from the precursor proteins parvalbumin,troponin,myosin,and actin,and were mainly formed by the hydrolysis of subtilisin(EC 3.4.21.62),aspartic proteinase(EC 3.4.23.1),thermolysin(EC 3.4.24.27),oligopeptidase B(EC 3.4.21.83),and proteinase P1(EC 3.4.21.96)from Bacillus,Kocuria,Lysobacter,Lactococcus,and Peptostreptococcus.The inhibition mainly resulted from the hydrogen bond and salt bridge between D4IPs and DPP-IV enzyme.This study provides important information on the proteases and related microbial strains to directionally prepare D4IPs in Chouguiyu.展开更多
We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn)...We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.展开更多
The main protease(M^(pro))is essential for the replication of SARS-COV-2 and therefore represents a promising anti-viral target.In this study,we screened M^(pro)inhibitory peptides from Ulva prolifera protein on in-si...The main protease(M^(pro))is essential for the replication of SARS-COV-2 and therefore represents a promising anti-viral target.In this study,we screened M^(pro)inhibitory peptides from Ulva prolifera protein on in-silico proteolysis.Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all the peptides were non-cytotoxic.The hexapeptide(SSGFID)exhibited high M^(pro)inhibitory activity in molecular docking and its IC_(50)value was 139.40±0.82μmol/L in vitro according to fluorescence resonance energy transfer assay(FRET).Quantitative real-time(qRT-)PCR results show that SSGFID could stimulate the expression of mitosis-related factors,including nuclear factor-κB,cyclin D1,and cyclin-dependent kinase 4,to promote the proliferation of mice splenocytes.Stability study revealed that SSGFID showed resistance against pepsin and trypsin but lost D(Asp)after pretreatment at121℃ for 15 min.Besides,SSGFID was mainly transported through the Caco-2 cell monolayer by the peptide transporter PepT1 and passive-mediated transport during the transport study.Unfortunately,the peptide was also degraded by Caco-2 intracellular enzymes,and the transfer rate of intact peptide was4.2%.Furthermore,Lineweaver–Burk plots demonstrated that SSGFID possessed a mixed inhibitory characteristic with M^(pro).Our study indicated the potential of Ulva prolifera as antiviral and immuneenhancing functional food ingredients and nutraceuticals.展开更多
基金supported by the Key Program of Natural Science Foundation of Shaanxi Province,No.2021JZ-60(to HZ)。
文摘Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma.
基金supported by the Major Project of Science and Technology Department of Yunnan Province (202002AA100005 and 202102AE090027-2)the Project of Yunnan Province Food and Drug Homologous Resources Functional Food Innovation Team (A3032023057)+2 种基金the YEFICRC project of Yunnan provincial key programs (2019ZG009)Yunnan Province Ten Thousand Plan Industrial Technology Talents project (YNWR-CYJS-2020-010)the Yunnan Provincial Department of Science and Technology Agricultural Joint Special Project (202101BD070001-120)。
文摘Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.
基金supported by the National Natural Science Foundation of China(No.82204276)the Guangxi Natural Science Foundation(No.2021GXNSFBA075036)+4 种基金the Specific Research Project of Guangxi for Research Bases and Talents(Nos.AD22035018,AD20297036)the 2021 University-Level Scientific Research Projects of Guangxi Minzu University(No.2021MDKJ003)the Talent Scientific Research Initiation Project of Guangxi Minzu University(No.2021KJQD09)the Xiangsi Lake Youth Innovation Team Project of Guangxi Minzu University(No.2021 RSCXSHQN01)the Guangxi Scholarship Fund of Guangxi Education Department.
文摘One new spirocyclic alkaloid,5-isopentenyl-cryptoechinuline D(1),along with 11 known compounds(2–12),were iso-lated from a marine fungus Aspergillus ruber TX-M4-1.The structures of compounds 1–12 were elucidated by spectroscopic evi-dences.Compound 1 was initially isolated as an enantiomer,and further separation of 1 by chiral HPLC afforded a pair of enantio-mers,including(-)-5-isopentenyl-cryptoechinuline D(1a)and(+)-5-isopentenyl-cryptoechinuline D(1b).Their absolute configura-tions were elucidated by ECD spectroscopic data.Compounds 1a,5 and 10 could inhibit thioredoxin reductase(TrxR)activity with IC50 values of 6.2,36.3 and 18.6μmol L^(-1),respectively.Surface plasmon resonance(SPR)study also demonsrated the interactions between compounds 6,8 and Niemann-Pick C1 Like 1(NPC1L1)respectively,which indicate that compounds 6 and 8 are potential NPC1L1 inhibitors.
基金supported by the China Postdoctoral Science Foundation,No.2020M681689(to YMH)the Basic Scientific Research Projects of Nantong,Nos.JC2020015(to HX)and JC2020041(to YMH)。
文摘Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation.Overproduced chemokines are responsible for the migratory process of the leukocytes,but the regulatory mechanism underlying the production of chemokines from resident cells of the spinal cord has not been fully elucidated.We examined the protein levels of macrophage migration inhibitory factor and chemokine C-C motif chemokine ligand 2 in a spinal cord contusion model at different time points following spinal cord injury.The elevation of macrophage migration inhibitory factor at the lesion site coincided with the increase of chemokine C-C motif chemokine ligand 2 abundance in astrocytes.Stimulation of primary cultured astrocytes with different concentrations of macrophage migration inhibitory factor recombinant protein induced chemokine C-C motif chemokine ligand 2 production from the cells,and the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine attenuated the stimulatory effect.Further investigation into the underlying mechanism on macrophage migration inhibitory factor-mediated astrocytic production of chemokine C-C motif chemokine ligand 2 revealed that macrophage migration inhibitory factor activated intracellular JNK signaling through binding with CD74 receptor.Administration of the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine following spinal cord injury resulted in the reduction of chemokine C-C motif chemokine ligand 2-recruited microglia/macrophages at the lesion site and remarkably improved the hindlimb locomotor function of rats.Our results have provided insights into the functions of astrocyte-activated chemokines in the recruitment of leukocytes and may be beneficial to develop interventions targeting chemokine C-C motif chemokine ligand 2 for neuroinflammation after spinal cord injury.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12072236,12162002,and11802086)the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT-20-A09)the Program for Excellent Young Talents in Colleges and Universities of Anhui Province of China(Grant No.gxyq ZD2020077)。
文摘Different from the common delayed synchronization(DS)in which response appears after stimulation,anticipated synchronization(AS)in unidirectionally coupled neurons denotes a counterintuitive phenomenon in which response of the receiver neuron appears before stimulation of the sender neuron,showing an interesting function of brain to anticipate the future.The dynamical mechanism for the AS remains unclear due to complex dynamics of inhibitory and excitatory modulations.In this article,the paradoxical roles of excitatory synapse and inhibitory autapse in the formation of AS are acquired.Firstly,in addition to the common roles such that inhibitory modulation delays and excitatory modulation advances spike,paradoxical roles of excitatory stimulation to delay spike via type-II phase response and of inhibitory autapse to advance spike are obtained in suitable parameter regions,extending the dynamics and functions of the excitatory and inhibitory modulations.Secondly,AS is related to the paradoxical roles of the excitatory and inhibitory modulations,presenting deep understandings to the AS.Inhibitory autapse induces spike of the receiver neuron advanced to appear before that of the sender neuron at first,and then excitatory synapse plays a delay role to prevent the spike further advanced,resulting in the AS as the advance and delay effects realize a dynamic balance.Lastly,inhibitory autapse with strong advance,middle advance,and weak advance and delay effects induce phase drift(spike of the receiver neuron advances continuously),AS,and DS,respectively,presenting comprehensive relationships between AS and other behaviors.The results present potential measures to modulate AS related to brain function.
基金financially supported by the National Key R&D Program of China(2019YFD0901903)the China Agriculture Research System of MOF and MARA(CARS-46,CARS-47)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010872)the Young S&T Talent Training Program of Guangdong Provincial Association for S&T,China(SKXRC202210)the Pearl River S&T Nova Program of Guangzhou(201906010081)the Central Public-interest Scientific Institution Basal Research Fund,CAFS(2020TD69).
文摘Fermented foods are a potential source to produce novel dipeptidyl peptidase-IV inhibitory peptides(D4IPs).In this study,the fermented mandarin fish(Chouguiyu)was used to screen D4IPs and their formation mechanism was studied by metagenomics and peptidomics.A total of 400 D4IPs with DPP-IV inhibition structure and high hydrophobicity were identified.The correlation network map showed that Lactococcus,Bacillus,Lysobacter,Pelagivirga,Kocuria,Escherichia,Streptococcus,and Peptostreptococcus were significantly correlated with the most D4IPs.Four stable D4IPs,including KAGARALTDAETAT,GEKVDFDDIQK,VVDADEMYLKGK,and GQKDSYVGDEAQ were respectively from the precursor proteins parvalbumin,troponin,myosin,and actin,and were mainly formed by the hydrolysis of subtilisin(EC 3.4.21.62),aspartic proteinase(EC 3.4.23.1),thermolysin(EC 3.4.24.27),oligopeptidase B(EC 3.4.21.83),and proteinase P1(EC 3.4.21.96)from Bacillus,Kocuria,Lysobacter,Lactococcus,and Peptostreptococcus.The inhibition mainly resulted from the hydrogen bond and salt bridge between D4IPs and DPP-IV enzyme.This study provides important information on the proteases and related microbial strains to directionally prepare D4IPs in Chouguiyu.
基金Project supported by the National Natural Science Foundation of China (Grant No.11402157)Applied Basic Research Programs of Shanxi Province,China (Grant No.201901D111086)。
文摘We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.
基金Supported by the National Key R&D Program of China (No.2016YFC1402102)the National Natural Science Foundation of China (No.41976109)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The main protease(M^(pro))is essential for the replication of SARS-COV-2 and therefore represents a promising anti-viral target.In this study,we screened M^(pro)inhibitory peptides from Ulva prolifera protein on in-silico proteolysis.Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all the peptides were non-cytotoxic.The hexapeptide(SSGFID)exhibited high M^(pro)inhibitory activity in molecular docking and its IC_(50)value was 139.40±0.82μmol/L in vitro according to fluorescence resonance energy transfer assay(FRET).Quantitative real-time(qRT-)PCR results show that SSGFID could stimulate the expression of mitosis-related factors,including nuclear factor-κB,cyclin D1,and cyclin-dependent kinase 4,to promote the proliferation of mice splenocytes.Stability study revealed that SSGFID showed resistance against pepsin and trypsin but lost D(Asp)after pretreatment at121℃ for 15 min.Besides,SSGFID was mainly transported through the Caco-2 cell monolayer by the peptide transporter PepT1 and passive-mediated transport during the transport study.Unfortunately,the peptide was also degraded by Caco-2 intracellular enzymes,and the transfer rate of intact peptide was4.2%.Furthermore,Lineweaver–Burk plots demonstrated that SSGFID possessed a mixed inhibitory characteristic with M^(pro).Our study indicated the potential of Ulva prolifera as antiviral and immuneenhancing functional food ingredients and nutraceuticals.