Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applicat...Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.展开更多
We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are opt...We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation.A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero.We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible.We fnd that,for polynomial degrees greater than or equal to two,there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal difusion are asymptotically compatible.We verify these fndings through extensive numerical experiments.展开更多
A new numerical method,scaled boundary isogeometric analysis(SBIGA)combining the concept of the scaled boundary finite element method(SBFEM)and the isogeometric analysis(IGA),is proposed in this study for 2D elastosta...A new numerical method,scaled boundary isogeometric analysis(SBIGA)combining the concept of the scaled boundary finite element method(SBFEM)and the isogeometric analysis(IGA),is proposed in this study for 2D elastostatic problems with both homogenous and inhomogeneous essential boundary conditions.Scaled boundary isogeometric transformation is established at a specified scaling center with boundary isogeometric representation identical to the design model imported from CAD system,which can be automatically refined without communication with the original system and keeping geometry invariability.The field variable,that is,displacement,is constructed by the same basis as boundary isogeometric description keeping analytical features in radial direction.A Lagrange multiplier scheme is suggested to impose the inhomogeneous essential boundary conditions.The new proposed method holds the semi-analytical feature inherited from SBFEM,that is,discretization only on boundaries rather than the entire domain,and isogeometric boundary geometry from IGA,which further increases the accuracy of the solution.Numerical examples,including circular cavity in full plane,Timoshenko beam with inhomogenous boundary conditions and infinite plate with circular hole subjected to remotely tension,demonstrate that SBIGA can be applied efficiently to elastostatic problems with various boundary conditions,and powerful in accuracy of solution and less degrees of freedom(DOF)can be achieved in SBIGA than other methods.展开更多
In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accura...In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accuracy is proved.Numerical results demonstrate its high effectiveness.展开更多
文摘Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.
文摘We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation.A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero.We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible.We fnd that,for polynomial degrees greater than or equal to two,there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal difusion are asymptotically compatible.We verify these fndings through extensive numerical experiments.
基金supported by the National Natural Science Foundation of China(Grant Nos.51138001,51009019,51109134)
文摘A new numerical method,scaled boundary isogeometric analysis(SBIGA)combining the concept of the scaled boundary finite element method(SBFEM)and the isogeometric analysis(IGA),is proposed in this study for 2D elastostatic problems with both homogenous and inhomogeneous essential boundary conditions.Scaled boundary isogeometric transformation is established at a specified scaling center with boundary isogeometric representation identical to the design model imported from CAD system,which can be automatically refined without communication with the original system and keeping geometry invariability.The field variable,that is,displacement,is constructed by the same basis as boundary isogeometric description keeping analytical features in radial direction.A Lagrange multiplier scheme is suggested to impose the inhomogeneous essential boundary conditions.The new proposed method holds the semi-analytical feature inherited from SBFEM,that is,discretization only on boundaries rather than the entire domain,and isogeometric boundary geometry from IGA,which further increases the accuracy of the solution.Numerical examples,including circular cavity in full plane,Timoshenko beam with inhomogenous boundary conditions and infinite plate with circular hole subjected to remotely tension,demonstrate that SBIGA can be applied efficiently to elastostatic problems with various boundary conditions,and powerful in accuracy of solution and less degrees of freedom(DOF)can be achieved in SBIGA than other methods.
基金The work of the first author is supported in part by NSF of China No.11171227Research Fund for young teachers of Jiangsu Normal University No.11XLR27+3 种基金and Priority Academic Program Development of Jiangsu Higher Education Institutions.The work of the second author is supported in part by NSF of China No.11171227Fund for Doctoral Authority of China No.20123127110001Fund for Einstitute of Shanghai Universities No.E03004and Leading Academic Discipline Project of Shanghai Municipal Education Commission No.J50101.
文摘In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accuracy is proved.Numerical results demonstrate its high effectiveness.