An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for t...An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.展开更多
In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm i...In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.展开更多
In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t...In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.展开更多
There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignme...There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.展开更多
In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used ...In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment.展开更多
In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived...In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.展开更多
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat...The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.展开更多
In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignmen...In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignment angle. When the Kalman filtering algorithm is adopted in initial alignment, it yields a constant error in the estimation of the azimuth misalignment angle because the east gyro drift rate cannot be estimated. To improve the alignment accuracy, a novel alignment method on revolving mounting base is proposed. The Kalman filtering algorithm of extending the measured values is studied. The theory of spectral condition number is utilized to analyze the degrees of observability of states. Simulation results show that the estimation accuracy of the azimuth misalignment angle is greatly improved through revolving mounting base, and the proposed method is efficient in initial alignment for a medium accurate SINS.展开更多
The widely used conventional linearized error models or perturbation models are not effective to represent the nonlinear characteristics of SINS error propagation with large attitude errors.Error equations in terms of...The widely used conventional linearized error models or perturbation models are not effective to represent the nonlinear characteristics of SINS error propagation with large attitude errors.Error equations in terms of quaternion error are derived,and extended Kalman filter techniques are used to solve the in-flight alignment problems.In the case of small attitude errors,the nonlinear models can be reduced to conventional phi-angle models.The simulation results show that the proposed error models may improve the performance of alignment.展开更多
To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple ...To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications.展开更多
文摘An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.
基金The National Basic Research Program of China (973 Program) (No. 613121010202)
文摘In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.
文摘In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.
基金the National Natural Science Foundationunder Grant No.60604019.
文摘There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.
基金supported by the National Natural Science Foundation of China(61233005)the Program for New Century Excellent Talents in University(NCET-11-0771)the Aerospace Science and Technology Innovation Fund(10300002012117003)
文摘In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment.
文摘In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.
基金supported by the National Natural Science Foundation of China(41174162).
文摘The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.
文摘In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignment angle. When the Kalman filtering algorithm is adopted in initial alignment, it yields a constant error in the estimation of the azimuth misalignment angle because the east gyro drift rate cannot be estimated. To improve the alignment accuracy, a novel alignment method on revolving mounting base is proposed. The Kalman filtering algorithm of extending the measured values is studied. The theory of spectral condition number is utilized to analyze the degrees of observability of states. Simulation results show that the estimation accuracy of the azimuth misalignment angle is greatly improved through revolving mounting base, and the proposed method is efficient in initial alignment for a medium accurate SINS.
文摘The widely used conventional linearized error models or perturbation models are not effective to represent the nonlinear characteristics of SINS error propagation with large attitude errors.Error equations in terms of quaternion error are derived,and extended Kalman filter techniques are used to solve the in-flight alignment problems.In the case of small attitude errors,the nonlinear models can be reduced to conventional phi-angle models.The simulation results show that the proposed error models may improve the performance of alignment.
基金Pre-research Foundation of PLA General Armaments Department (51309010602) National Natural Science Foundation of China (60774002)
文摘To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications.