期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A fast and accurate initial alignment method for strapdown inertial navigation system on stationary base 被引量:11
1
作者 Xinlong WANG Gongxun SHEN 《控制理论与应用(英文版)》 EI 2005年第2期145-149,共5页
In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t... In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method. 展开更多
关键词 Strapdown inertial navigation system (SINS) initial alignment Kalman filter OBSERVABILITY
下载PDF
New celestial assisted INS initial alignment method for lunar explorer 被引量:2
2
作者 Weiren Wu Xiaolin Ning Lingling Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期108-117,共10页
In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used ... In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment. 展开更多
关键词 lunar exploration initial alignment inertial navigation celestial navigation.
下载PDF
Anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base
3
作者 XUE Haijian WANG Tao +2 位作者 CAI Xinghui WANG Jintao LIU Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1333-1342,共10页
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat... The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness. 展开更多
关键词 strapdown inertial navigation system(SINS) initial alignment ANTI-INTERFERENCE rocking base adaptive recursive weighted least squares(ARWLS)
下载PDF
Novel method of improving the alignment accuracy of SINS on revolving mounting base 被引量:11
4
作者 Qian Weixing Liu Jianye Zhao Wei Zhu Yanhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1052-1057,共6页
In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignmen... In the process of initial alignment for a strapdown inertial navigation system (SINS) on a stationary base, the east gyro drift rate is an important factor affecting the alignment accuracy of the azimuth misalignment angle. When the Kalman filtering algorithm is adopted in initial alignment, it yields a constant error in the estimation of the azimuth misalignment angle because the east gyro drift rate cannot be estimated. To improve the alignment accuracy, a novel alignment method on revolving mounting base is proposed. The Kalman filtering algorithm of extending the measured values is studied. The theory of spectral condition number is utilized to analyze the degrees of observability of states. Simulation results show that the estimation accuracy of the azimuth misalignment angle is greatly improved through revolving mounting base, and the proposed method is efficient in initial alignment for a medium accurate SINS. 展开更多
关键词 inertial navigation initial alignment observability analysis Kalman filter spectral condition number.
下载PDF
Multiple Fading Factors Kalman Filter for SINS Static Alignment Application 被引量:28
5
作者 GAO Weixi MIAO Lingjuan NI Maolin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期476-483,共8页
To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple ... To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications. 展开更多
关键词 inertial navigation systems STRAPDOWN initial alignment fading filter multiple fading factors FENESTRATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部