期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Processes of initial collision and suturing between India and Asia 被引量:48
1
作者 DING Lin Satybaev MAKSATBEK +7 位作者 CAI FuLong WANG HouQi SONG PeiPing JI WeiQiang XU Qiang ZHANG LiYun Qasim MUHAMMAD Baral UPENDRA 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第4期635-651,共17页
The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we revie... The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates.Following a comparison of the different methods that have been used to constrain the initial timing of collision,we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event,and that paleomagnetism presents independent evidence as an alternative,reliable,and quantitative research method.In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca.55 Ma and50 Ma and progressively closed eastwards,more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone(YTSZ) between ca.65 Ma and 63 Ma and then spreading both eastwards and westwards.While continental collision is a complicated process,including the processes of deformation,sedimentation,metamorphism,and magmatism,different researchers have tended to define the nature of this event based on their own understanding,an intuitive bias that has meant that its initial timing has remained controversial for decades.Here,we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods. 展开更多
关键词 Timing of initial collision between the Indian and Asian continents collision criteria Transform fault Subduction zone Magmatism Deformation
原文传递
Theoretical prediction of the optimal conditions for observing the stereodynamical vector properties of the C(~3P) + OH(X^2Π) → CO(X^1 Σ^+) + H(~2S) reaction
2
作者 王远鹏 赵美玉 +2 位作者 姚舜怀 宋朋 马凤才 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期491-496,共6页
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et a... The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory (QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j’ of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail. 展开更多
关键词 quasi-classical trajectory initial states stereodynamics polarization collision energy
下载PDF
Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples 被引量:28
3
作者 ZHU DiCheng WANG Qing ZHAO ZhiDan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第6期1040-1056,共17页
Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing tem... Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing temperature, and decreasing pressure), the continent-continent collisional process has been divided into three stages, including initial collision, ongoing collision, and tectonic transition. These stages are characterized by normal calc-alkaline andesitic magma(dehydration of the oceanic crust to release fluids), the migration of calc-alkaline magma toward the trench(dehydration of the oceanic crust or an increase in temperature) or small-scale crust-derived peraluminous magma(heat from intra-crustal shearing), and extensive magmatism with compositional diversity induced by slab break-off(increasing temperature and decreasing pressure), respectively.On the basis of the obtained age of slab break-off, the timing of the initial continent-continent collision can be quantitatively back-dated using the convergence rate, depth of slab break-off, and subduction angle. The spatio-temporal migration of the magmatic activity of the Gangdese Batholith, the onset of magmatic flare-up, and the increase of magma temperature at 52–51Ma documented by the volcanic rocks of the Linzizong Pana Formation were most likely the result of the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere at approximately 53 Ma. This proposed age of slab break-off suggests that the initial India-Asia collision likely occurred at approximately 55–54 Ma, which is consistent with the collision ages constrained by other abundant geological data(60–55 Ma). This magmatic method has been applied to the Bitlis orogenic belt in southern Turkey in the Arabia-Eurasia continental collision zone, yielding an age range of approximately 29–22 Ma for the initial Arabia-Asia continental collision that is close to the collision ages recently obtained by apatite fission-track dating(approximately20 Ma) and regional tectonic shortening(approximately 27 Ma). The intense folding of the Upper Cretaceous and the angular unconformity between the overlying Linzizong volcanic rocks in the southern Lhasa Terrane(90.69 Ma) are not related to the initial continental collision between India and Asia, but can be interpreted as the consequences of the strong coupling between the hot and young subducting oceanic crust immediately south of the spreading ridge and the overriding lithosphere or the subduction of the Neo-Tethys oceanic plateaux or seamounts. The tectonic event documented by the angular unconformity between the Linzizong Dianzhong Formation and the Nianbo Formation lasted approximately 3 Ma and likely marks the initial India-Asia collision. The significant deceleration of the Indian continent at approximately 51 Ma can be attributed to the disappearance of the slab pull force in the subduction zone due to the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere. The descent of the eclogitized lower crust of the northern Indian continent provides the main driving force for the current northward motion of Indian plate. The weak deformation of the lithospheric plate in the overriding plate of the India-Asia collisional zone between 60 and 40 Ma can be attributed to the high-angle subduction related to the rollback of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere after the initial India-Asia continental collision, the presence of the thick crust and high elevation on the southern margin of the Lhasa Terrane, and the decoupling between the mid-upper and lower crust and between the lower crust and lithospheric mantle of the Indian continent. 展开更多
关键词 Magmatic record Slab break-off Timing of initial collision India-Asia collision Tethyan orogenic belt
原文传递
An Optimal Algorithm for Solving Collision Distance Between Convex Polygons in Plane
4
作者 鄢勇 《Journal of Computer Science & Technology》 SCIE EI CSCD 1993年第4期367-373,共7页
In this paper,we study the problem,of calculating the minimum collision distance between two planar convex polygons when one of them moves to another along a given direction.First,several novel concepts and properties... In this paper,we study the problem,of calculating the minimum collision distance between two planar convex polygons when one of them moves to another along a given direction.First,several novel concepts and properties are explored,then an optimal algorithm OPFIV with time complexity O(log(n+m))is developed and its correctness and optimization are proved rigorously. 展开更多
关键词 Planar convex polygons collision distance initial collision vertex optimal algorithm effective collision edge packing problem computational geometry
原文传递
Opportunities and challenges of the Sponge City construction related to urban water issues in China 被引量:74
5
作者 XIA Jun ZHANG YongYong +3 位作者 XIONG LiHua HE Shan WANG LongFeng YU ZhongBo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第4期652-658,共7页
Waterlogging is one of the major water issues in most cities of China and directly restricts their urbanization processes.The construction of Sponge City is an effective approach to solving the urban water issues,part... Waterlogging is one of the major water issues in most cities of China and directly restricts their urbanization processes.The construction of Sponge City is an effective approach to solving the urban water issues,particularly for the waterlogging.In this study,both the urban issues emerged at the stage of rapid urbanization in China and the demands as well as problems of Sponge City construction related with the water issues were investigated,and the opportunities and challenges for the Sponge City construction in the future were also proposed.It was found that the current stormwater management focused on the construction of gray infrastructures(e.g.,drainage network and water tank) based on the fast discharge idea,which was costly and hard to catch up with the rapid expansion of city and its impervious surface,while green infrastructures(e.g.,river,lake and wetland)were ignored.Moreover,the current construction of Sponge City was still limited to low impacted development(LID) approach which was concentrated on source control measures without consideration of the critical functions of surrounding landscapes(i.e.,mountain,river,wetland,forest,farmland and lake),while application of the integrated urban water system approach and its supported technologies including municipal engineering,urban hydrology,environmental science,social science and ecoscape were relatively weak and needed to be improved.Besides,the lack of special Sponge City plan and demonstration area was also a considerable problem.In this paper,some perspectives on Good Sponge City Construction were proposed such as the point that idea of urban plan and construction should conform to the integral and systematic view of sustainable urban development.Therefore,both the basic theoretical research and the basic infrastructure construction such as monitoring system,drainage facility and demonstration area should be strengthened,meanwhile,the reformation and innovation in the urban water management system and the education system should also be urgently performed.The study was expected to provide a deeper thinking for the current Sponge City construction in China and to give some of suggestions for the future directions to urban plan and construction,as well as urban hydrology discipline. 展开更多
关键词 Tibetan Plateau Indian Plate Asian Plate initial collision Suturing processes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部