This work explores the postbuckling behavior of a marine stifened composite plate in the presence of initial imperfections.The imperfection shapes are derived from buckling mode shapes and their combinations.Thereafte...This work explores the postbuckling behavior of a marine stifened composite plate in the presence of initial imperfections.The imperfection shapes are derived from buckling mode shapes and their combinations.Thereafter,these imperfection shapes are applied to the model,and nonlinear large defection fnite element and progressive failure analyses are performed in ANSYS 18.2 software.The Hashin failure criterion is employed to model the progressive failure in the stifened composite plate.The efect of the initial geometric imperfection on the stifened composite plate is investigated by considering various imperfection patterns and magnitudes.Results show that when the magnitude of the imperfection is 20 mm,the ultimate strength of the stifened composite plate decreases by 31%.Moreover,global imperfection shapes are found to be fundamental in determining the ultimate strength of stifened composite plates and their postbuckling.展开更多
To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerica...To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.展开更多
The fatigue performance of optimized welded detail has been investigated by fatigue experiments of three welded specimens under different loadings.In addition,local finite element models of this welded detail were est...The fatigue performance of optimized welded detail has been investigated by fatigue experiments of three welded specimens under different loadings.In addition,local finite element models of this welded detail were established using finite element software ANSYS.The influences of different factors such as plate thickness,plate gap and initial geometric imperfections on the stress concentration coefficient(SCC) were discussed.The experimental results indicate that the fatigue life of three specimens for this welded detail is 736,000,1,044,200 and 1,920,300 times,respectively.The web thickness,the filler plate thickness and the initial geometric imperfection have relatively less effect on the SCCs of this welded detail.However,cope-hole radius is influential on the SCCs of the web and the weld.The SCC of weld is significantly affected by the weld size and plate gap,but the SCCs of other parts of the welded detail are hardly affected by the plate gap.展开更多
文摘This work explores the postbuckling behavior of a marine stifened composite plate in the presence of initial imperfections.The imperfection shapes are derived from buckling mode shapes and their combinations.Thereafter,these imperfection shapes are applied to the model,and nonlinear large defection fnite element and progressive failure analyses are performed in ANSYS 18.2 software.The Hashin failure criterion is employed to model the progressive failure in the stifened composite plate.The efect of the initial geometric imperfection on the stifened composite plate is investigated by considering various imperfection patterns and magnitudes.Results show that when the magnitude of the imperfection is 20 mm,the ultimate strength of the stifened composite plate decreases by 31%.Moreover,global imperfection shapes are found to be fundamental in determining the ultimate strength of stifened composite plates and their postbuckling.
基金The National Key Technology R&D Program of China(No.2012BAJ03B06)the National Natural Science Foundation of China(No.51308105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Southeast University(No.KYLX_0152,SJLX_0084,KYLX_0149)
文摘To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.
基金supported by the National Natural Science Foundation of China(51308467 and 51378431)China railway corporation research and development of science and technology key project(2013G001-A-2)
文摘The fatigue performance of optimized welded detail has been investigated by fatigue experiments of three welded specimens under different loadings.In addition,local finite element models of this welded detail were established using finite element software ANSYS.The influences of different factors such as plate thickness,plate gap and initial geometric imperfections on the stress concentration coefficient(SCC) were discussed.The experimental results indicate that the fatigue life of three specimens for this welded detail is 736,000,1,044,200 and 1,920,300 times,respectively.The web thickness,the filler plate thickness and the initial geometric imperfection have relatively less effect on the SCCs of this welded detail.However,cope-hole radius is influential on the SCCs of the web and the weld.The SCC of weld is significantly affected by the weld size and plate gap,but the SCCs of other parts of the welded detail are hardly affected by the plate gap.
基金supported by the Talent Introduction Project of Chongqing University (Grant No.02090011044159)the Fundamental Research Funds for the Central Universities (Grant No.2022CDJXY-005).