For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given. Based on numer...For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given. Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values.展开更多
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ...The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractio...In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysi...The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysis and numerical experiments for the case of onedimensional equations.The sensitivity of the difference scheme to initial values is further analyzed.The results show that the computational stability primarily depends on the form of the initial values if the difference scheme and boundary conditions are determined.Thus,the computational stability is sensitive to the initial perturbations.展开更多
In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and init...In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.展开更多
The equation of pattern formation induced by buoyancy or by surface-tension gradient in finite systems confined between horizontal poor heat conductors is introduced by Knobloch[1990] where u is the planform function,...The equation of pattern formation induced by buoyancy or by surface-tension gradient in finite systems confined between horizontal poor heat conductors is introduced by Knobloch[1990] where u is the planform function, μ is the scaled Rayleigh number, K = 1 and α represents the effects of a heat transfer finite Blot number. The cofficients β, δ and γ do not vanish when the boundary, conditions at top and bottom are not identical (β / 0, δ / 0) or nonBoussinesq effects are taked into account (γ / 0). In this paper, the Knobloch equation with α > 0 is considered, the global existence in L2-space and the finite existence time of solution in V2-space have been obtained respectively.展开更多
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for th...With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.展开更多
The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞)...The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.展开更多
In this paper, we study the initiial-boundary value problem of one class of nonlinear Schrodinger equations described in molecular crystals. Furthermore, the existence of the global solution is obtained by means of in...In this paper, we study the initiial-boundary value problem of one class of nonlinear Schrodinger equations described in molecular crystals. Furthermore, the existence of the global solution is obtained by means of interpolation inequality and a priori estimation.展开更多
The inverse problem for a class of nonlinear evolution equations of dispersive type type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equippi...The inverse problem for a class of nonlinear evolution equations of dispersive type type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equipping equivalent norm technique, the existence and uniqueness theorem of global solution was obtained for this class of abstract evolution equations, and was applied to the inverse problem discussed here. The existence and uniqueness theorem of global solution it,as given for this class of nonlinear evolution equations of dispersive type. The results extend and generalize essentially the related results of the existence and uniqueness of local solution presented by YUAN Zhong-xin.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of C...Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of CamassaHolm equation on half axis is also investigated in this paper. When the initial potential is nonnegative,then the classical solution exists globally; if the derivative of initial data on zero point is nonpositire, then the life span of nonzero solution nmst be finite.展开更多
This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on ...This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on σand f , we obtained the unique existence of the global classical solution of this problem.展开更多
In this paper,we apply Fokas unified method to study the initial boundary value(IBV)problems for nonlinear integrable equation with 3×3 Lax pair on the finite interval[0,L].The solution can be expressed by the so...In this paper,we apply Fokas unified method to study the initial boundary value(IBV)problems for nonlinear integrable equation with 3×3 Lax pair on the finite interval[0,L].The solution can be expressed by the solution of a 3×3 Riemann-Hilbert(RH)problem.The relevant jump matrices are written in terms of matrix-value spectral functions s(k),S(k),S_(l)(k),which are determined by initial data at t=0,boundary values at x=0 and boundary values at x=L,respectively.What's more,since the eigenvalues of 3×3 coefficient matrix of k spectral parameter in Lax pair are three different values,search for the path of analytic functions in RH problem becomes a very interesting thing.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
In this paper, a mini max theorem was showed mega which the paper proves a new existent and unique result on solution of the boundary value problem for the nonlinear wave equation by using the mini max theorem.
The singularly perturbed nonlinear noniocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the...The singularly perturbed nonlinear noniocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. By using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied, and by educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are considered.展开更多
基金supported by the project"Global Changefor Regional Response"of the Important Study Project of the National Natural Science Foundation of China (Grant No.902110041)the Key Innovation Project of the Chinese Academy of Sciences (KZCX3-SW-213).
文摘For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given. Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values.
文摘The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金supported by the National Natural Science Foundation of China (No. 10671182)
文摘In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
基金supported by the"Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues"of the Chinese Academy of Sciences (Grant No.XDA01020304)
文摘The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysis and numerical experiments for the case of onedimensional equations.The sensitivity of the difference scheme to initial values is further analyzed.The results show that the computational stability primarily depends on the form of the initial values if the difference scheme and boundary conditions are determined.Thus,the computational stability is sensitive to the initial perturbations.
文摘In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.
基金Project supported by the National Natural Science Foundation of China!(No:19861004)
文摘The equation of pattern formation induced by buoyancy or by surface-tension gradient in finite systems confined between horizontal poor heat conductors is introduced by Knobloch[1990] where u is the planform function, μ is the scaled Rayleigh number, K = 1 and α represents the effects of a heat transfer finite Blot number. The cofficients β, δ and γ do not vanish when the boundary, conditions at top and bottom are not identical (β / 0, δ / 0) or nonBoussinesq effects are taked into account (γ / 0). In this paper, the Knobloch equation with α > 0 is considered, the global existence in L2-space and the finite existence time of solution in V2-space have been obtained respectively.
基金Natural Science Foundation of Gansu Province of China
文摘With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
文摘The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.
基金Project supported by the National Natural Science Foundation of China (Nos.10576013,10471050)the Natural Science Foundation of Guangdong Province of China (No.5300889)
文摘In this paper, we study the initiial-boundary value problem of one class of nonlinear Schrodinger equations described in molecular crystals. Furthermore, the existence of the global solution is obtained by means of interpolation inequality and a priori estimation.
文摘The inverse problem for a class of nonlinear evolution equations of dispersive type type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equipping equivalent norm technique, the existence and uniqueness theorem of global solution was obtained for this class of abstract evolution equations, and was applied to the inverse problem discussed here. The existence and uniqueness theorem of global solution it,as given for this class of nonlinear evolution equations of dispersive type. The results extend and generalize essentially the related results of the existence and uniqueness of local solution presented by YUAN Zhong-xin.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
基金Supported by the National Natural Science Founda-tion of China (10131050)
文摘Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of CamassaHolm equation on half axis is also investigated in this paper. When the initial potential is nonnegative,then the classical solution exists globally; if the derivative of initial data on zero point is nonpositire, then the life span of nonzero solution nmst be finite.
文摘This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on σand f , we obtained the unique existence of the global classical solution of this problem.
基金supported by the National Natural Science Foundation of China(11901167,11971313 and 51879045)Key scientific research projects of higher education institutions in Henan,China(18B110008).
文摘In this paper,we apply Fokas unified method to study the initial boundary value(IBV)problems for nonlinear integrable equation with 3×3 Lax pair on the finite interval[0,L].The solution can be expressed by the solution of a 3×3 Riemann-Hilbert(RH)problem.The relevant jump matrices are written in terms of matrix-value spectral functions s(k),S(k),S_(l)(k),which are determined by initial data at t=0,boundary values at x=0 and boundary values at x=L,respectively.What's more,since the eigenvalues of 3×3 coefficient matrix of k spectral parameter in Lax pair are three different values,search for the path of analytic functions in RH problem becomes a very interesting thing.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
基金the Natural Science Foundation of Southern Yangtze University China(0371)
文摘In this paper, a mini max theorem was showed mega which the paper proves a new existent and unique result on solution of the boundary value problem for the nonlinear wave equation by using the mini max theorem.
基金The NNSF (90111011 and 10471039) of Chinathe National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission (N.E03004)
文摘The singularly perturbed nonlinear noniocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. By using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied, and by educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are considered.